A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Seizure evolution can be characterized as path through synaptic gain space of a neural mass model. | LitMetric

Physiologically based models could facilitate better understanding of mechanisms underlying epileptic seizures. In this paper, we attempt to reveal the dynamic evolution of intracranial EEG activity during epileptic seizures based on synaptic gain identification procedure of a neural mass model. The distribution of average excitatory, slow and fast inhibitory synaptic gain in the parameter space and their temporal evolution, i.e., the path through the model parameter space, were analyzed in thirty seizures from ten temporal lobe epileptic patients. Results showed that the synaptic gain values located roughly on a plane before seizure onset, dispersed during seizure and returned to the plane when seizure terminated. Cluster analysis was performed on seizure paths and demonstrated consistency in synaptic gain evolution across different seizures from the individual patient. Furthermore, two patient groups were identified, each one corresponding to a specific synaptic gain evolution in the parameter space during a seizure. Results were validated by a bootstrapping approach based on comparison with random paths. The differences in the path revealed variations in EEG dynamics for patients despite showing identical seizure onset pattern. Our approach may have the potential to classify the epileptic patients into subgroups based on different mechanisms revealed by subtle changes in synaptic gains and further enable more robust decisions regarding treatment strategy.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ejn.14142DOI Listing

Publication Analysis

Top Keywords

synaptic gain
24
parameter space
12
neural mass
8
mass model
8
epileptic seizures
8
epileptic patients
8
plane seizure
8
seizure onset
8
gain evolution
8
seizure
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!