Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Peptidase-E, a nonclassical serine peptidase, is specific for dipeptides with an N-terminal aspartate. This stringent substrate specificity remains largely unexplained. We report an aspartate-bound structure of peptidase-E at 1.83 Å resolution. In contrast to previous reports, the enzyme forms a dimer, and the active site is located at the dimer interface, well shielded from the solvent. Our findings further suggest that the stringent aspartate specificity of the enzyme is due to electrostatics and molecular complementarity in the active site. The new structural information presented herein may provide insights into the role of functionally important residues in peptidase-E.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/1873-3468.13247 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!