The diagnostic challenge in very-long chain acyl-CoA dehydrogenase deficiency (VLCADD).

J Inherit Metab Dis

Department of General Pediatrics, Center for Pediatrics and Adolescent Medicine, Medical Centre- University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.

Published: November 2018

Very long-chain acyl-CoA dehydrogenase deficiency (VLCADD) is the most common defect of mitochondrial β-oxidation of long-chain fatty acids. However, the unambiguous diagnosis of true VLCADD patients may be challenging, and a high rate of false positive individuals identified by newborn screening undergo confirmation diagnostics. In this study, we show the outcome of enzyme testing in lymphocytes as a confirmatory tool in newborns identified by screening, and the correlation with molecular sequencing of the ACADVL gene. From April 2013 to March 2017, in 403 individuals with characteristic acylcarnitine profiles indicative of VLCADD, palmitoyl-CoA oxidation was measured followed by molecular genetic analysis in most of the patients with residual activity (RA) <50%. In almost 50% of the samples (209/403) the RA was >50%, one-third of the individuals (125/403) displayed a RA of 30-50% and 69/403 individuals showed a residual activity of 0-30%. Sequencing of the ACADVL gene revealed that all individuals with activities below 24% were true VLCADD patients, individuals with residual activities between 24 and 27% carried either one or two mutations. Twenty new mutations could be identified and functionally classified based on their effect on enzyme function. Finally, we observed an up-regulation of MCAD-activity in many patients. However, this did not correlate with the degree of VLCAD RA. Although the likely clinical phenotype cannot be fully foreseen by genetic and functional tests as it depends on many factors, our data demonstrate the strength of this functional enzyme test in lymphocytes as a quick and reliable method for confirmation diagnostics of VLCADD.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10545-018-0245-5DOI Listing

Publication Analysis

Top Keywords

acyl-coa dehydrogenase
8
dehydrogenase deficiency
8
deficiency vlcadd
8
true vlcadd
8
vlcadd patients
8
confirmation diagnostics
8
sequencing acadvl
8
acadvl gene
8
residual activity
8
individuals residual
8

Similar Publications

Acyl-CoA oxidase 1 (ACOX1), a member of the acyl-coenzyme A oxidase family, is considered a crucial regulator whose dysregulation is implicated in the occurrence and progression of various cancers. This study aims to elucidate the impact of ACOX1 in CRC, shedding light on its potential as a therapeutic target. Through analysis of the GEO dataset, it was found that ACOX1 is significantly downregulated in colorectal cancer (CRC), and this lower expression level is associated with a worse prognosis.

View Article and Find Full Text PDF

Aim: To investigate fasting metabolism in children with very long-chain acyl-CoA dehydrogenase deficiency (VLCADD) and medium-chain acyl-CoA dehydrogenase deficiency (MCADD) using microdialysis technique.

Methods: Twelve patients (7 with VLCADD, 5 with MCADD, mean age 4.9 years, 10/12 diagnosed via newborn screening) were recruited for investigation in connection to clinical fasting examinations at the Karolinska University Hospital (between 2015 and 2024).

View Article and Find Full Text PDF

DNA methylation of ACADS promotes immunogenic cell death in hepatocellular carcinoma.

Cell Biosci

January 2025

Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China.

Background: Altered metabolism has become an important characteristic of cancer, and acyl-CoA dehydrogenase short-chain (ACADS), a regulator of lipid synthesis, is involved in carcinogenesis-associated metabolic pathways. DNA methylation is an important mechanism for silencing ACADS in various malignancies. However, the specific role of ACADS in hepatocellular carcinoma (HCC) pathogenesis remains poorly understood.

View Article and Find Full Text PDF

Lysine succinylation, and its reversal by sirtuin-5 (SIRT5), is known to modulate mitochondrial fatty acid β-oxidation (FAO). We recently showed that feeding mice dodecanedioic acid, a 12-carbon dicarboxylic acid (DC) that can be chain-shortened four rounds to succinyl-CoA, drives high-level protein hypersuccinylation in the peroxisome, particularly on peroxisomal FAO enzymes. However, the ability of SIRT5 to reverse DC-induced peroxisomal succinylation, or to regulate peroxisomal FAO in this context, remained unexplored.

View Article and Find Full Text PDF

Clinical Significance of Acyl-CoA Dehydrogenase Short Chain and Its Anti-tumor Role in Hepatocellular Carcinoma by Inhibiting Canonical Wnt/β-Catenin Pathway.

Dig Dis Sci

January 2025

Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, No. 801 Heqing Road, Minhang District, Shanghai, 200240, China.

Background: The pathogenesis of hepatocellular carcinoma (HCC) emphasizes metabolic disorders. HCC patients showed abnormally low expression of Acyl-CoA dehydrogenase short chain (ACADS).

Objectives: This study aimed to elucidate the clinical significance and mechanistic role of ACADS in HCC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!