Human immunodeficiency virus (HIV) genetic compartmentalization is defined as genetic differences in HIV in different tissue compartments or subcompartments that characterize viral quasispecies. This descriptive, longitudinal study assessed the dynamics of inflammation, humoral immune response, blood-brain barrier, blood-cerebrospinal fluid (CSF) barrier, as well as neuronal injury biomarkers in serially obtained CSF and serum samples from an antiretroviral (ARV) therapy-naïve patient with HIV-1 subtype C with CSF HIV genetic compartmentalization that resolved spontaneously without ARV treatment. The first CSF sample showed an increase in white blood cell (WBC) count (382 cells/mm) and a marked increase in the levels of inflammatory cytokines and chemokines, including tumor necrosis factor (TNF)α, interleukin (IL)-10, IP-10, and regulated on activation, normal T cell expressed and secreted (RANTES), which raise the suspicion of dual infection. Serum sample analysis showed all cytokine levels to be normal, with only IP-10 slightly increased. These results corroborate the hypothesis that the CNS immunologic response in a patient with HIV infection was independent of the systemic immunologic response. The patient also had persistently elevated levels of sCD14, neopterin, and βM, which were strongly suggestive of persistent CNS immunologic stimulation. This report describes a patient with HIV subtype C who developed a transient episode of asymptomatic HIV meningitis with compartmentalization of HIV in the CSF that resolved independently of ARV therapy. Extensive CSF studies were performed as part of an ongoing longitudinal study, which revealed CNS immune abnormalities. This case presents evidence of HIV-1 subtype C neurotropism and compartmentalization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6279585PMC
http://dx.doi.org/10.1007/s13365-018-0672-yDOI Listing

Publication Analysis

Top Keywords

genetic compartmentalization
12
human immunodeficiency
8
hiv genetic
8
longitudinal study
8
hiv-1 subtype
8
cns immunologic
8
immunologic response
8
response patient
8
patient hiv
8
hiv
7

Similar Publications

Background/objectives: Considering the large number of candidates in vaccine-testing studies against different pathogens and the amount of time spent in the preclinical and clinical trials, there is a pressing need to develop an improved in vivo system to quickly screen vaccine candidates. The model of a polyester-polyurethane sponge implant provides a rapid analysis of the specific stimulus-response, allowing the study of a compartmentalized microenvironment. The sponge implant's defined measurements were standardized as a compartment to assess the immune response triggered by the vaccinal antigen.

View Article and Find Full Text PDF

Background: Liquid-liquid phase separation (LLPS) is essential for the formation of membraneless organelles and significantly influences cellular compartmentalization, chromatin remodeling, and gene regulation. Previous research has highlighted the critical function of liquid-liquid biopolymers in the development of hepatocellular carcinoma (HCC).

Methods: This study conducted a comprehensive review of 3,685 liquid-liquid biopolymer regulators, leading to the development of a LLPS related Prognostic Risk Score (LPRS) for HCC through bootstrap-based univariate Cox, Random Survival Forest (RSF), and LASSO analyses.

View Article and Find Full Text PDF

Genotypic difference in response to copper stress in upland cotton as revealed by physiological and molecular expression analyses.

BMC Plant Biol

January 2025

Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.

Article Synopsis
  • Cotton has potential for cleaning copper-polluted soil, yet its tolerance mechanisms to copper toxicity remain unclear.
  • Two cotton lines, A2304 (Cu-tolerant) and A1415 (Cu-sensitive), were studied for their morphological and physiological responses to copper excess, revealing A2304's superior antioxidant activities and lower reactive oxygen species.
  • A2304 exhibited smarter gene expression changes for copper handling, reducing active copper ion concentrations while maintaining similar overall copper uptake compared to A1415, thus potentially mitigating copper toxicity effects.
View Article and Find Full Text PDF

Long-range organization of intestinal 2D-crypts using exogenous Wnt3a micropatterning.

Nat Commun

January 2025

Biomimetic Systems for Cell Engineering Laboratory, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.

Intestinal epithelial cells are segregated into proliferative crypts and differentiated regions. This organization relies on specific signals, including Wnt3a, which regulates cell proliferation within crypts, and Eph/Ephrin, which dictates cell positioning along the crypt-villus axis. However, studying how the spatial distributions of these signals influences crypt-villus organization is challenging both in vitro and in vivo.

View Article and Find Full Text PDF

Bacterial biomineralization of heavy metals and its influencing factors for metal bioremediation.

J Environ Manage

January 2025

Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India. Electronic address:

Increasing industrial pollution and certain hazardous agricultural practices have led to the discharge of heavy toxic metals into the environment. Among different bioremediation techniques, biomineralization is the synthesis of biomineral crystals extracellularly or intracellularly. Several bacteria, such as Bacillus cereus, Pseudomonas stutzeri, Bacillus subtilis, and Lactobacillus sphaericus have been found to induce heavy metal precipitation and mineralization for bioremediation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!