To investigate the mechanisms underlying the maintenance of neural stem cells, we performed two-dimensional fluorescence-difference gel electrophoresis (2D-DIGE) targeting the nuclear phosphorylated proteins. Nuclear phosphorylated protein Matrin-3 was identified in neural stem cells (NSCs) after stimulation using fibroblast growth factor 2 (FGF2). Matrin-3 was expressed in the mouse embryonic subventricular and ventricular zones. Small interfering RNA (siRNA)-mediated knockdown of Matrin-3 caused neuronal differentiation of NSCs in vitro, and altered the cerebral layer structure of foetal brain in vivo. Transfection of Matrin-3 plasmids in which the serine 208 residue was point-mutated to alanine (Ser208Ala mutant Matrin3) and inhibition of Ataxia telangiectasia mutated kinase (ATM kinase), which phosphorylates Matrin-3 Ser208 residue, caused neuronal differentiation and decreased the proliferation of neurosphere-forming stem cells. Thus, our proteomic approach revealed that Matrin-3 phosphorylation was essential for FGF2-dependent maintenance of NSCs in vitro and in vivo.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6128890 | PMC |
http://dx.doi.org/10.1038/s41598-018-31597-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!