Oil palm is an oleaginous plant of relevant economic importance since its fruits are rich in vegetable oil. These plants have a single apical meristem and the main method for vegetative propagation is somatic embryogenesis. The aim of this study was to identify differentially abundant proteins from oil palm genotypes contrasting in the capacity of embryogenic competence acquisition, using shotgun proteomics. Oil palm leaves were subjected to callus induction and the material was collected in biological triplicates at 14 and 90 days of callus induction. LC-MS/MS analysis was performed and revealed a total of 4695 proteins. Responsive and non-responsive genotypes were compared at 14 and 90 days of callus induction and 221 differentially abundant proteins were obtained. The data analysis revealed several proteins mainly related to energy metabolism, stress response and regulation of cell cycle, further analyzed by qRT-PCR, which seem important for embryogenic development. We suggest some of these proteins as key factors for the success of callus formation in oil palm including antioxidant and cell division proteins as well as proteins involved in the ubiquitination pathway. These proteins may also be potential biomarkers for the acquisition of embryogenic competence. SIGNIFICANCE: Antioxidant and cell division proteins as well as proteins involved in the ubiquitination pathway are key factors for the success of callus formation in oil palm. The proteins identified in this study may be potential biomarkers for embryogenic competence acquisition.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jprot.2018.08.015DOI Listing

Publication Analysis

Top Keywords

oil palm
24
embryogenic competence
12
callus induction
12
proteins
11
cell cycle
8
somatic embryogenesis
8
differentially abundant
8
abundant proteins
8
competence acquisition
8
90 days callus
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!