Resveratrol is a natural polyphenol found mainly on red grapes and in red wine, pointed as an important anti-inflammatory/immunomodulatory molecule. However, its bioavailability problems have limited its use encouraging the search for new alternatives agents. Thus, in this study, we synthetize 12 resveratrol analogues (6 imines, 1 thioimine and 5 hydrazones) and investigated its cytotoxicity, antioxidant activity and in vitro anti-inflammatory/immunomodulatory properties. The most promising compounds were also evaluated in vivo. The results showed that imines presented less cytotoxicity, were more effective than resveratrol on DPPH scavenger and exhibited an anti-inflammatory profile. Among them, the imines with a radical in the para position, on the ring B, not engaged in an intramolecular hydrogen-interaction, showed more prominent anti-inflammatory activity modulating, in vivo, the edema formation, the inflammatory infiltration and cytokine levels. An immunomodulatory activity also was observed in these molecules. Thus, our results suggest that imines with these characteristics presents potential to control inflammatory disorders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmc.2018.08.029 | DOI Listing |
Curr Nutr Rep
January 2025
Research and Development cell, Department of Intellectual property Rights, Lovely Professional University, Jalandhar- Delhi Grand Trunk Rd., Phagwara, Punjab, 144411, India.
Purpose Of Review: This review explores the mechanistic pathways and clinical implications of phytochemicals in obesity management, addressing the global health crisis of obesity and the pressing need for effective, natural strategies to combat this epidemic.
Recent Findings: Phytochemicals demonstrate significant potential in obesity control through various molecular mechanisms. These include the modulation of adipogenesis, regulation of lipid metabolism, enhancement of energy expenditure, and suppression of appetite.
Front Physiol
December 2024
National Heart and Lung Institute, Imperial College London, London, United Kingdom.
Introduction: Adrenergic activation of protein kinase A (PKA) in cardiac muscle targets the sarcolemma, sarcoplasmic reticulum, and contractile apparatus to increase contractile force and heart rate. In the thin filaments of the contractile apparatus, cardiac troponin I (cTnI) Ser22 and Ser23 in the cardiac-specific N-terminal peptide (NcTnI: residues 1 to 32) are the targets for PKA phosphorylation. Phosphorylation causes a 2-3 fold decrease of affinity of cTn for Ca associated with a higher rate of Ca dissociation from cTnC leading to a faster relaxation rate of the cardiac muscle (lusitropy).
View Article and Find Full Text PDFJ Food Sci
January 2025
Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, P.R. China.
The applications of resveratrol (RES) and puerarin (PUE) with notable physiological functions are greatly limited in functional food and pharmaceutical industries due to their poor water solubility and chemical instability. Accordingly, co-loading of RES and PUE into chitosan-based nanoparticles (NPs) is performed here by an anti-solvent method to improve their bioavailability. The fabricated NPs at 8:1 mass ratio of carboxymethyl chitosan (CMC) to chitosan hydrochloride (CHC) with the particle size of 375.
View Article and Find Full Text PDFSubcell Biochem
December 2024
School of Public Health, Sun Yat-Sen University, Guangzhou, China.
Ageing is a natural process accompanied by functional and structural decline of diverse tissues and organs, which could cause susceptibility to various diseases and death. The anti-ageing interventions have aroused huge research interest with the rapid rise of ageing population in the world. Resveratrol, a polyphenolic stilbene, could be naturally isolated from various plants, such as grapes, blueberries, and peanuts.
View Article and Find Full Text PDFCarbohydr Polym
February 2025
Institute of Rehabilitation Medicine, School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, People's Republic of China; Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai 264003, People's Republic of China. Electronic address:
Natural polysaccharides with excellent biocompatibility are considered ideal materials for repairing diabetic foot ulcer. However, diabetic foot ulcer is often accompanied by decreased muscle function, even resulting in muscle atrophy. During wound repair, monitoring muscle function at the wound site in real time can identify the decreased muscle strength timely, which is crucial for precise wound rehabilitation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!