The comprehensive analysis of aqueous film forming foam (AFFF) formulations has led in recent years to the discovery of novel classes of perfluoroalkyl and polyfluoroalkyl substances (PFASs). Whether the pre-existing analytical methods for historically monitored PFASs, including perfluorooctane sulfonate (PFOS), could be transferable to a large breadth of newly identified PFASs remains, however, an open question. Data from various lines of evidence indicate that current extraction procedures previously validated with anionic and neutral PFASs may seriously underperform for many cationic and zwitterionic PFASs. The extraction efficiency and instrumental response could be strongly matrix-dependent, which may preclude a robust analysis. The present study sought to investigate a suitable sample preparation procedure for the analysis of anionic, cationic, and zwitterionic PFASs in soil samples. In total, 86 PFASs, representing 24 chemical classes previously discovered in AFFF formulations or at AFFF-impacted sites, were evaluated. The merits and limitations of various extraction media were examined using an AFFF-impacted field-weathered loam soil, as well as a background loam soil amended with AFFFs in-house. Methanol with hydrochloric acid provided excellent recoveries for most cationic and zwitterionic PFASs, including fluorotelomer sulfonamidoalkyl betaines (e.g., 6:2 FTAB) and fluorotelomer betaines (e.g., 9:1:2 FTB), yet performed less satisfactorily for certain anionic PFASs, and may also cause conversion of some PFASs. Sequential extractions using methanol with ammonium acetate exhibited limited matrix effects and suitable recoveries of PFASs from soils of diverse textural classes and organic matter content. The newly-developed extraction method presented the best option for future in-depth characterization of PFASs at AFFF-impacted sites.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2018.06.046DOI Listing

Publication Analysis

Top Keywords

pfass
12
cationic zwitterionic
12
zwitterionic pfass
12
perfluoroalkyl polyfluoroalkyl
8
polyfluoroalkyl substances
8
afff formulations
8
pfass including
8
afff-impacted sites
8
loam soil
8
optimization extraction
4

Similar Publications

Polystyrene microplastics attenuated the impact of perfluorobutanoic acid on Chlorella sorokiniana: Hetero-aggregation, bioavailability, physiology, and transcriptomics.

J Hazard Mater

January 2025

Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China.

Microplastics (MPs) and perfluorobutanoic acid (PFBA), emerging contaminants, are ubiquitous in the environment and toxic to organisms. The interaction of MPs with other contaminants can affect their toxicity. However, the impact of MPs on PFBA toxicity remains unknown.

View Article and Find Full Text PDF

Degradation and defluorination of CF PFASs with different functional groups by VUV/UV-based reduction and oxidation processes.

J Hazard Mater

January 2025

Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, South Korea; Institute of Health & Environment, Seoul National University, Seoul, South Korea. Electronic address:

Structural diversity can affect the degradability of per- and polyfluoroalkyl substances (PFASs) during water treatment. Here, three PFASs with different functional groups-CF-R, PFHpA, PFHxS, and 6:2 FTS-were degraded using vacuum ultraviolet (VUV/UV)-based treatments. While fully fluorinated PFASs-PFHpA and PFHxS-were degraded faster in the VUV/UV/sulfite reaction than in VUV/UV photolysis, VUV/UV photolysis was more effective for degrading 6:2 FTS by OH radicals produced through photolysis of water.

View Article and Find Full Text PDF

Release of poly- and perfluoroalkyl substances from AFFF-impacted soils: Effects of water saturation in vadose zone soils.

J Contam Hydrol

January 2025

Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois St, Golden, CO 80401, USA. Electronic address:

Soil samples collected from an aqueous film-forming foam (AFFF)-impacted sandy soil formation at two depth intervals above the water table were used in bench-scale column experiments to evaluate the release of poly- and perfluoroalkyl substances (PFASs) under different degrees of water saturation. Artificial rainwater was applied to the soils under constant and variably saturated conditions. Results from constant saturation experiments suggest that retention of PFAS mass at air-water interfaces was evident in the deep soil (f < 0.

View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFASs) have been widely used in daily life but they cause certain impacts on the environment due to their unique carbon-fluorine chemical bonds that are difficult to degrade in the environment. Toxicological studies on PFASs and their alternatives have mainly focused on vertebrates, while terrestrial and aquatic invertebrates have been studied to a lesser extent. As invertebrates at the bottom of the food chain play a crucial role in the whole ecological chain, it is necessary to investigate the toxicity of PFASs to invertebrates.

View Article and Find Full Text PDF

The impact of anions on electrooxidation of perfluoroalkyl acids by porous Magnéli phase titanium suboxide anodes.

PLoS One

January 2025

Department of Crop and Soil Sciences, College of Agricultural and Environmental Sciences, University of Georgia, Griffin, Georgia, United States of America.

Previous studies have indicated the great performance of electrooxidation (EO) to mineralize per- and polyfluoroalkyl substances (PFASs) in water, but different anions presented in wastewater may affect the implementation of EO treatment in field applications. This study invetigated EO treatment of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), two representative perfluoroalkyl acids (PFAAs), using porous Magnéli phase titanium suboxide anodes in electrolyte solutions with different anions present, including NO3-, SO42-, CO32- and PO43-. The experiment results indicate that CO32- enhanced PFAS degradation, while NO3- suppressed the degradation reactions with its concentration higher than 10 mM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!