A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Radioiodination and biological distribution of a new s-triazine derivative for tumor uptake evaluation. | LitMetric

Radioiodination and biological distribution of a new s-triazine derivative for tumor uptake evaluation.

J Labelled Comp Radiopharm

Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Egypt.

Published: December 2018

A newly synthesized s-triazine derivative 1,1',1″-(((1,3,5-triazine-2,4,6-triyl) tris (azanediyl)) tris (benzene-4,1-diyl))tris (ethan-1-one), (1), was synthesized as a part of an ongoing research for development of novel s-triazine-based radiopharmaceuticals. In-vitro cell viability assay against different human cancer cell lines showed very promising inhibitory activity of the synthesized compound. This finding encouraged the radioiodination of 1 to study the degree of its localization in tumor site for evaluating the possibility of its use as a tumor imaging agent. The biodistribution study showed good localization of the radioiodinated derivative 2 at tumor site following i.v. administration in solid tumor-bearing mice. Finally, in a trial to understand the mechanism of the anticancer effect exerted by 1, a target prediction study and a docking study were performed. The results of the first study showed that focal adhesion kinase is a possible target for compound 1 and the docking study confirmed successful binding of both compound 1 and its radioiodinated derivative 2 to the binding site of focal adhesion kinase. As a conclusion, the results of this study suggest that, compound 2 could be used as a potential agent for tumor imaging after preclinical trials.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jlcr.3682DOI Listing

Publication Analysis

Top Keywords

s-triazine derivative
8
derivative tumor
8
tumor site
8
tumor imaging
8
radioiodinated derivative
8
docking study
8
focal adhesion
8
adhesion kinase
8
study
7
tumor
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!