A Markedly Improved Synthetic Approach for the Preparation of Multifunctional Au-DNA Nanoparticle Conjugates Modified with Optical and MR Imaging Probes.

Bioconjug Chem

Department of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology , Northwestern University, 2145 Sheridan Road , Evanston , Illinois 60208-3113 , United States.

Published: November 2018

We describe a new, and vastly superior approach for labeling spherical nucleic acid conjugates (SNAs) with diagnostic probes. SNAs have been shown to provide the unique ability to traverse the cell membrane and deliver surface conjugated DNA into cells while preserving the DNA from nuclease degradation. Our previous work on preparing diagnostically labeled SNAs was labor intensive, relatively low yielding, and costly. Here, we describe a straightforward and facile preparation for labeling SNAs with optical and MR imaging probes with significantly improved physical properties. The synthesis of Gd(III) labeled DNA Au nanoparticle conjugates is achieved by sequential conjugation of 3'-thiol-modified oligonucleotides and cofunctionalization of the particle surface with the subsequent addition of 1,2 diothiolate modified chelates of Gd(III) (abbreviated: DNA-Gd@AuNP). This new generation of SNA conjugates has a 2-fold increase of DNA labeling and a 1.4-fold increase in Gd(III) loading compared to published constructs. Furthermore, the relaxivity ( r) is observed to increase 4.5-fold compared to the molecular dithiolane-Gd(III) complex, and 1.4-fold increase relative to previous particle constructs where the Gd(III) complexes were conjugated to the oligonucleotides rather than directly to the Au particle. Importantly, this simplified approach (2 steps) exploits the advantages of previous Gd(III) labeled SNA platforms; however, this new approach is scalable and eliminates modification of DNA for attaching the contrast agent, and the particles exhibit improved cell labeling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6268127PMC
http://dx.doi.org/10.1021/acs.bioconjchem.8b00504DOI Listing

Publication Analysis

Top Keywords

nanoparticle conjugates
8
optical imaging
8
imaging probes
8
gdiii labeled
8
14-fold increase
8
dna
5
gdiii
5
markedly improved
4
improved synthetic
4
approach
4

Similar Publications

Antibody-drug conjugates (ADCs) have emerged as a promising strategy in targeted cancer therapy, enabling the precise delivery of cytotoxic agents to tumor sites while minimizing systemic toxicity. However, traditional ADCs face significant limitations, including restricted drug loading capacity, where an optimal drug-to-antibody ratio (DAR) is crucial; low DARs may lead to insufficient potency, while high DARs can cause rapid clearance and increased toxicity. Additionally, ADCs often suffer from instability in circulation due to the potential for premature release of cytotoxic agents, resulting in off-target effects and reduced therapeutic efficacy.

View Article and Find Full Text PDF

Nanomaterials that engage in well-defined and tunable interactions with proteins are pivotal for the development of advanced applications. Achieving a precise molecular-level understanding of nano-bio interactions is essential for establishing these interactions. However, such an understanding remains challenging and elusive.

View Article and Find Full Text PDF

Ferritin nanocarriers, which can penetrate the blood-brain barrier (BBB), have gained significant research interest for the diagnosis and treatment of central nervous system (CNS) diseases, including gliomas, Alzheimer's disease, and brain metastases. In recent years, ferritin has been proved as a candidate to cross the BBB using receptor-mediated transcytosis (RMT) mechanism through transferrin receptor 1 (TfR1) which is overexpressed in the cells of the BBB. Various types of cargo molecules, including therapeutics, imaging agents, nucleic acids, and metal nanoparticles, have been incorporated into ferritin nanocages for the diagnosis and treatment of CNS diseases.

View Article and Find Full Text PDF

CD-44 targeted nanoparticles for combination therapy in an in vitro model of triple-negative breast cancer: Targeting the tumour inside out.

Colloids Surf B Biointerfaces

January 2025

Institute of Cancer Therapeutics, University of Bradford, Bradford, Richmond Rd, Bradford BD7 1DP, United Kingdom. Electronic address:

Triple-negative breast cancer (TNBC) is an aggressive form of breast cancer defined by the lack of three key receptors: estrogen, progesterone, and HER2. This lack of receptors makes TNBC difficult to treat with hormone therapy or drugs, and so it is characterised by a poor prognosis compared to other kinds of breast cancer. This study explores photoactive Poly(lactic-co-glycolic acid) (PLGA) nanoparticles as a potential therapeutic strategy for TNBC.

View Article and Find Full Text PDF

Oxygen-Driven Atom Transfer Radical Polymerization.

J Am Chem Soc

January 2025

State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.

In traditional atom transfer radical polymerization (ATRP), oxygen must be meticulously eliminated due to its propensity to quench radical species and halt the polymerization process. Additionally, oxygen oxidizes the lower-valent Cu catalyst, compromising its ability to activate alkyl halides and propagate polymerization. In this study, we present an oxygen-driven ATRP utilizing alkylborane compounds, a method that not only circumvents the need for stringent oxygen removal but also exploits oxygen as an essential cofactor to promote polymerization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!