Colloidal quantum dots (QDs) are highly attractive as the active material for optical amplifiers and lasers. Here, we address the relation between the structure of CdSe/CdS core/shell QDs, the material gain they can deliver, and the threshold needed to attain net stimulated emission by optical pumping. On the basis of an initial gain model, we predict that reducing the thickness of the CdS shell grown around a given CdSe core will increase the maximal material gain, while increasing the shell thickness will lower the gain threshold. We assess this trade-off by means of transient absorption spectroscopy. Our results confirm that thin-shell QDs exhibit the highest material gain. In quantitative agreement with the model, core and shell sizes hugely impact on the material gain, which ranges from 2800 cm for large core/thin shell QDs to less than 250 cm for small core/thick shell QDs. On the other hand, the significant threshold reduction expected for thick-shell QDs is absent. We relate this discrepancy between model and experiment to a transition from attractive to repulsive exciton-exciton interactions with increasing shell thickness. The spectral blue-shift that comes with exciton-exciton repulsion leads to competition between stimulated emission and higher energy absorbing transitions, which raises the gain threshold. As a result, small-core/thick-shell QDs need up to 3.7 excitations per QD to reach transparency, whereas large-core/thin shell QDs only need 1.0, a number often seen as a hard limit for biexciton-mediated optical gain. This makes large-core/thin-shell QDs that feature attractive exciton-exciton interactions the overall champion core/shell configuration in view of highest material gain, lowest threshold exciton occupation, and longest gain lifetime.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.8b02493DOI Listing

Publication Analysis

Top Keywords

material gain
20
shell qds
12
gain
11
qds
9
optical gain
8
quantum dots
8
stimulated emission
8
increasing shell
8
shell thickness
8
gain threshold
8

Similar Publications

Micro/nanoscale 3D bioelectrodes gain increasing interest for electrophysiological recording of electroactive cells. Although 3D printing has shown promise to flexibly fabricate 3D bioelectronics compared with conventional microfabrication, relatively-low resolution limits the printed bioelectrode for high-quality signal monitoring. Here, a novel multi-material electrohydrodynamic printing (EHDP) strategy is proposed to fabricate bioelectronics with sub-microscale 3D gold pillars for in vitro electrophysiological recordings.

View Article and Find Full Text PDF

Antarctic organisms are known for producing unique secondary metabolites, and this study specifically focuses on the less-explored metabolites of the moss Warnstorfia fontinaliopsis. To evaluate their potential bioactivity, we extracted secondary metabolites using four different solvents and identified significant lipase inhibitory activity in the methanol extract. Non-targeted metabolomic analysis using liquid chromatography-tandem mass spectrometry (LC-MS/MS) on this extract predicted the presence of 12 compounds, including several not previously reported in mosses.

View Article and Find Full Text PDF

Two-dimensional layered double hydroxides (LDHs) are ideal candidates for a large number of (bio)catalytic applications due to their flexible composition and easy to tailor properties. Functionality can be achieved by intercalation of amino acids (as the basic units of peptides and proteins). To gain insight on the functionality, we apply resonant inelastic soft x-ray scattering and near edge x-ray absorption fine structure spectroscopy to CaFe LDH in its pristine form as well as intercalated with the amino acids proline and cysteine to probe the electronic structure and its changes upon intercalation.

View Article and Find Full Text PDF

Prussian blue nanoparticles (PBNPs) have been identified as a promising candidate for biomimetic peroxidase (POD)-like activity, specifically due to the metal centres (Fe/Fe) of Prussian blue (PB), which have the potential to function as catalytically active centres. The decoration of PBNPs with desired functional polymers (such as amino- or carboxylate-based) primarily facilitates the subsequent linkage of biomolecules to the nanoparticles for their use in biosensor applications. Thus, the elucidation of the catalytic POD mimicry of these systems is of significant scientific interest but has not been investigated in depth yet.

View Article and Find Full Text PDF

Complementary transistors are critical for circuits with compatible input/output signal dynamic range and polarity. Organic electronics offer biocompatibility and conformability; however, generation of complementary organic transistors requires introduction of separate materials with inadequate stability and potential for tissue toxicity, limiting their use in biomedical applications. Here, we discovered that introduction of source/drain contact asymmetry enables spatial control of de/doping and creation of single-material complementary organic transistors from a variety of conducting polymers of both carrier types.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!