A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Uncoiling CNLs: Structure/Function Approaches to Understanding CC Domain Function in Plant NLRs. | LitMetric

Uncoiling CNLs: Structure/Function Approaches to Understanding CC Domain Function in Plant NLRs.

Plant Cell Physiol

Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, UK.

Published: December 2018

Plant nucleotide-binding leucine-rich repeat receptors (NLRs) are intracellular pathogen receptors whose N-terminal domains are integral to signal transduction after perception of a pathogen-derived effector protein. The two major plant NLR classes are defined by the presence of either a Toll/interleukin-1 receptor (TIR) or a coiled-coil (CC) domain at their N-terminus (TNLs and CNLs). Our knowledge of how CC domains function in plant CNLs lags behind that of how TIR domains function in plant TNLs. CNLs are the most abundant class of NLRs in monocotyledonous plants, and further research is required to understand the molecular mechanisms of how these domains contribute to disease resistance in cereal crops. Previous studies of CC domains have revealed functional diversity, making categorization difficult, which in turn makes experimental design for assaying function challenging. In this review, we summarize the current understanding of CC domain function in plant CNLs, highlighting the differences in modes of action and structure. To aid experimental design in exploring CC domain function, we present a 'best-practice' guide to designing constructs through use of sequence and secondary structure comparisons and discuss the relevant assays for investigating CC domain function. Finally, we discuss whether using homology modeling is useful to describe putative CC domain function in CNLs through parallels with the functions of previously characterized helical adaptor proteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6290485PMC
http://dx.doi.org/10.1093/pcp/pcy185DOI Listing

Publication Analysis

Top Keywords

domain function
20
function plant
16
understanding domain
8
function
8
tnls cnls
8
domains function
8
plant cnls
8
experimental design
8
domain
6
plant
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!