A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Frailty Among Patients Receiving Hemodialysis: Evolution of Components and Associations With Mortality. | LitMetric

Background: Understanding how components of frailty change over time and how they can be modeled as time-dependent predictors of mortality could lead to better risk prediction in the dialysis population.

Methods: We measured frailty at baseline, 12 months, and 24 months among 727 patients receiving hemodialysis in Northern California and Atlanta. We examined the likelihood of meeting frailty components (weight loss, exhaustion, low physical activity, weak grip strength, and slow gait speed) as a function of time in logistic regression analysis and association of frailty components with mortality in time-updated multivariable Cox models.

Results: Physical activity and gait speed declined, exhaustion and grip strength did not change, and the odds of meeting the weight loss criterion declined with time. All five components were associated with higher mortality in multivariable analyses, but gait speed was the strongest individual predictor. All frailty components except physical inactivity were independently associated with mortality when all five components were included in the same model. The number of frailty components met was associated with mortality in a gradient that ranged from a hazard ratio of 2.73 for one component to 10.07 for five components met; the model including all five components was the best model based on Akaike information criterion.

Conclusions: Measurement of all frailty components was necessary for optimal mortality prediction, and the number of components met was strongly associated with mortality in this cohort.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6376100PMC
http://dx.doi.org/10.1093/gerona/gly206DOI Listing

Publication Analysis

Top Keywords

frailty components
20
components
12
gait speed
12
associated mortality
12
components met
12
frailty
8
patients receiving
8
receiving hemodialysis
8
mortality
8
weight loss
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!