Distribution networks-from vasculature to urban transportation pathways-are spatially embedded networks that must route resources efficiently in the face of pressures induced by the costs of building and maintaining network infrastructure. Such requirements are thought to constrain the topological and spatial organization of these systems, but at the same time, different kinds of distribution networks may exhibit variable architectural features within those general constraints. In this study, we use methods from network science to compare and contrast two classes of biological transport networks: mycelial fungi and vasculature from the surface of rodent brains. These systems differ in terms of their growth and transport mechanisms, as well as the environments in which they typically exist. Though both types of networks have been studied independently, the goal of this study is to quantify similarities and differences in their network designs. We begin by characterizing the structural backbone of these systems with a collection of measures that assess various kinds of network organization across topological and spatial scales, ranging from measures of loop density, to those that quantify connected pathways between different network regions, and hierarchical organization. Most importantly, we next carry out a network analysis that directly considers the spatial embedding and properties especially relevant to the function of distribution systems. We find that although both the vasculature and mycelia are highly constrained planar networks, there are clear distinctions in how they balance tradeoffs in network measures of wiring length, efficiency, and robustness. While the vasculature appears well organized for low cost, but relatively high efficiency, the mycelia tend to form more expensive but in turn more robust networks. As a whole, this work demonstrates the utility of network-based methods to identify both common features and variations in the network structure of different classes of biological transport systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6145589 | PMC |
http://dx.doi.org/10.1371/journal.pcbi.1006428 | DOI Listing |
Metabolomics
December 2024
School of Biosciences and the Birmingham Institute of Forest Research, University of Birmingham, Birmingham, B15 2TT, UK.
Introduction: Tree bacterial diseases are a threat in forestry due to their increasing incidence and severity. Understanding tree defence mechanisms requires evaluating metabolic changes arising during infection. Metabolite extraction affects the chemical diversity of the samples and, therefore, the biological relevance of the data.
View Article and Find Full Text PDFArch Toxicol
December 2024
College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China.
Hepatitis is a chronic inflammatory liver disease and an important cause of liver fibrosis, which can progress to cirrhosis and even hepatocellular carcinoma if left untreated. However, liver fibrosis is a reversible disease, so finding new intervention targets and molecular markers is the key to preventing and treating liver fibrosis. Ginseng, the roots of Panax ginseng C.
View Article and Find Full Text PDFMembranes (Basel)
December 2024
Department of Medical Engineering, Upper Austria University of Applied Sciences, 4020 Linz, Austria.
The viscoelastic properties of biological membranes are crucial in controlling cellular functions and are determined primarily by the lipids' composition and structure. This work studies these properties by varying the structure of the constituting lipids in order to influence their interaction with high-density lipoprotein (HDL) particles. Various fluorescence-based techniques were applied to study lipid domains, membrane order, and the overall lateral as well as the molecule-internal glycerol region mobility in HDL-membrane interactions (i.
View Article and Find Full Text PDFMetabolites
December 2024
Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia.
Background: Data on the genetic factors contributing to inter-individual variability in muscle fiber size are limited. Recent research has demonstrated that mice lacking the Arkadia (RNF111) N-terminal-like PKA signaling regulator 2N (; also known as ) gene exhibit reduced muscle fiber size, contraction force, and exercise capacity, along with defects in calcium handling within fast-twitch muscle fibers. However, the role of the gene in human muscle physiology, and particularly in athletic populations, remains poorly understood.
View Article and Find Full Text PDFMetabolites
December 2024
Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy.
: Essential oils (EOs) have been exploited by humans for centuries, but many sources remain poorly investigated, mainly due to the low yields associated with conventional extraction. Recently, new techniques have been developed, like solvent-free microwave extraction (SFME), able to enhance efficiency and sustainability. The use of L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!