Little is known about vascular mitochondrial respiratory function and the impact of age. Therefore, skeletal muscle feed arteries were harvested from young (33 ± 7 yr, n = 10), middle-aged (54 ± 5 yr, n = 10), and old (70 ± 7 yr, n = 10) subjects, and mitochondrial respiration as well as citrate synthase (CS) activity were assessed. Complex I (CI) and complex I + II (CI+II) state 3 respiration were greater in young (CI: 10.4 ± 0.8 pmol·s·mg and CI+II: 12.4 ± 0.8 pmol·s·mg, P < 0.05) than middle-aged (CI: 7 ± 0.6 pmol·s·mg and CI+II: 8.3 ± 0.5 pmol·s·mg) and old (CI: 7.2 ± 0.4 pmol·s·mg and CI+II: 7.6 ± 0.5 pmol·s·mg) subjects and, as in the case of complex II (CII) state 3 respiration, were inversely correlated with age [ r = -0.56 (CI), r = -0.7 (CI+II), and r = 0.4 (CII), P < 0.05]. In contrast, state 4 respiration and mitochondria-specific superoxide levels were not different across groups. The respiratory control ratio was greater in young (2.2 ± 0.2, P < 0.05) than middle-aged and old (1.4 ± 0.1 and 1.1 ± 0.1, respectively) subjects and inversely correlated with age ( r = -0.71, P < 0.05). As CS activity was inversely correlated with age ( r = -0.54, P < 0.05), when normalized for mitochondrial content, the age-related differences and relationships with state 3 respiration were ablated. In contrast, mitochondrion-specific state 4 respiration was now lower in young (15 ± 1.4 pmol·s·mg·U CS, P < 0.05) than middle-aged and old (23.4 ± 3.6 and 27.9 ± 3.4 pmol·s·mg·U CS, respectively) subjects and correlated with age ( r = 0.46, P < 0.05). Similarly, superoxide/CS levels were lower in young (0.07 ± 0.01) than old (0.19 ± 0.41) subjects and correlated with age ( r = 0.44, P < 0.05). Therefore, with aging, vascular mitochondrial respiratory function declines, predominantly as a consequence of falling mitochondrial content. However, per mitochondrion, aging likely results in greater mitochondrion-derived oxidative stress, which may contribute to age-related vascular dysfunction. NEW & NOTEWORTHY This study determined, for the first time, that vascular mitochondrial oxidative respiratory capacity, oxidative coupling efficiency, and mitochondrial content fell progressively with advancing age. In terms of single mitochondrion-specific respiration, the age-related differences were completely ablated and the likelihood of free radical production increased progressively with advancing age. This study reveals that vascular mitochondrial respiratory capacity declines with advancing age, as a consequence of falling mitochondrial content, as does oxidative coupling efficiency.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6336964PMC
http://dx.doi.org/10.1152/ajpheart.00324.2018DOI Listing

Publication Analysis

Top Keywords

vascular mitochondrial
20
state respiration
20
correlated age
20
mitochondrial respiratory
16
advancing age
16
mitochondrial content
16
respiratory function
12
pmol·s·mg ci+ii
12
005 middle-aged
12
inversely correlated
12

Similar Publications

Background: Growing evidence indicates that disruptions in mitochondrial quality management contribute to the development of acute kidney injury (AKI), incomplete or maladaptive kidney repair, and chronic kidney disease. However, the temporal dynamics of mitochondrial quality control alterations in relation to renal injury and its recovery remain poorly understood and are addressed in this manuscript.

Method: ology: Male Wistar rats (n = 60) were subjected to varying durations of ischemia and reperfusion.

View Article and Find Full Text PDF

According to epidemiological studies, diabetes is more common in patients with AD, which suggests that diabetes is a significant risk factor for AD. Accelerating brain cell degeneration, worsening cognitive decline, and increasing susceptibility to AD can be attributed to pathogenic mechanisms linked to diabetes, such as impaired insulin signaling in the brain, neuroinflammation, oxidative stress, mitochondrial dysfunction, and vascular impairment. These factors can also lead to the accumulation of β-amyloid and tau protein phosphorylation.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a prevalent inflammatory neurodegenerative disease in young people, causing neurological abnormalities and impairment. To investigate a novel therapeutic agent for MS, we observed the impact of maresin 1 (MaR1) on disease progression in a well-known, relapsing-remitting experimental autoimmune encephalomyelitis (RR-EAE) mouse model. Treatment with MaR1 accelerated inflammation resolution, reduced neurological impairment, and delayed disease development by reducing immune cell infiltration (CD4+IL-17+ and CD4+IFNγ+) into the central nervous system (CNS).

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most common type of dementia and one of the leading causes of death in elderly patients. The number of patients with AD in the United States is projected to double by 2060. Thus, understanding modifiable risk factors for AD is an urgent public health priority.

View Article and Find Full Text PDF

Dysregulation of Mitochondrial Homeostasis in Cardiovascular Diseases.

Pharmaceuticals (Basel)

January 2025

Department of Cardiac Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA.

Mitochondria dysfunction plays a central role in the development of vascular diseases as oxidative stress promotes alterations in mitochondrial morphology and function that contribute to disease progression. Redox imbalances can affect normal cellular processes including mitochondrial biogenesis, electrochemical equilibrium, and the regulation of mitochondrial DNA. In this review, we will discuss these imbalances and, in particular, the potential role of mitochondrial fusion, fission, biogenesis, and mitophagy in the context of vascular diseases and how the dysregulation of normal function might contribute to disease progression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!