The effect of a coherence resonance is observed experimentally in a GaAs/Al_{0.45}Ga_{0.55}As superlattice under dc bias at room temperature, which is driven by noise. For an applied voltage, for which no current self-oscillations are observed, regular current self-oscillations with a frequency of about 82 MHz are induced by exceeding a certain noise amplitude. In addition, a novel kind of a stochastic resonance is identified, which is triggered by the coherence resonance. This stochastic resonance appears when the device is driven by an external ac signal with a frequency, which is relatively close to that of the regular current self-oscillations at the coherence resonance. The intrinsic oscillation mode in the coherence resonance is found to be phase locked by an extremely weak ac signal. It is demonstrated that an excitable superlattice device can be used for the fast detection of weak signals submerged in noise. These results are very well reproduced by results using numerical simulations based on a sequential resonant tunneling model of nonlinear electron transport in semiconductor superlattices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.121.086806 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Chemistry, McGill University, Montréal, Québec H3A 0G4, Canada.
Metal powders are crucial precursors for manufacturing surfaces through thermal spraying, cold spraying, and 3D printing methods. However, surface oxidation of these precursors poses a challenge to the coherence of the metallic materials during manufacturing processes. Herein, we introduce a method for surface modification of copper powder with N-heterocyclic carbenes (NHCs) using mechanochemistry to mitigate surface oxidation.
View Article and Find Full Text PDFJ Neurol Sci
January 2025
Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA.
Background: Several studies show that optical coherence tomography (OCT) metrics e with cognition, disability, and brain structure in people with multiple sclerosis (PwMS). This review the correlation between OCT parameters and magnetic resonance imaging (MRI) measurements in PwMS.
Methods: A comprehensive search of PubMed/MEDLINE, Embase, Scopus, and Web of Science was performed, including studies published in English up to November 29, 2024 to identify studies reporting quantitative data on the correlation between baseline OCT parameters and MRI measurements in PwMS.
J Chem Phys
January 2025
Science Institute and Faculty of Physical Sciences, University of Iceland, Reykjavík, Iceland.
Understanding the ultrafast vibrational relaxation following photoexcitation of molecules in a condensed phase is essential to predict the outcome and improve the efficiency of photoinduced molecular processes. Here, the vibrational decoherence and energy relaxation of a binuclear complex, [Pt2(P2O5H2)4]4- (PtPOP), upon electronic excitation in liquid water and acetonitrile are investigated through direct adiabatic dynamics simulations. A quantum mechanics/molecular mechanics (QM/MM) scheme is used where the excited state of the complex is modeled with orbital-optimized density functional calculations while solvent molecules are described using potential energy functions.
View Article and Find Full Text PDFNat Chem
January 2025
SAMS Research Group, Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22, Strasbourg, France.
Molecular spin qubits have the advantages of synthetic flexibility and amenability to be tailored to specific applications. Among them, chromophore-radical systems have emerged as appealing qubit candidates. These systems can be initiated by light to form triplet-radical pairs that can result in the formation of quartet states by spin mixing.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia.
This study investigates the motion of an electron in a Coulomb potential driven by an intense linearly polarized XUV laser pulse analyzed using Gordon-Volkov wave functions. The wave function is decomposed into spherical partial waves to model the scattered electron wave packet after the recollision with a proton. This interaction triggers high harmonic generation, producing coherent X-ray pulses with frequencies that are integer multiples of the XUV field.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!