A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Multiphoton Microscopy of π-Conjugated Copolymers and Copolymer/Fullerene Blends for Organic Photovoltaic Applications. | LitMetric

Organic photovoltaic (OPV) cells based on π-conjugated copolymer/fullerene blends are devices with the highest power conversion efficiencies within the class of organic semiconductors. Although a number of image microscopies have been applied to films of π-conjugated copolymers and their fullerene blends, seldom have they been able to detect microscopic defects in the blend films. We have applied multiphoton microscopy (MPM) using a 65 fs laser at 1.56 μm for spectroscopy and mapping of films of various π-conjugated copolymers and their fullerene blends. All pristine copolymer films have shown third harmonic generation (THG) and two-photon or three-photon photoluminescence that could be used for mapping the films with micrometer spatial resolution. Since the fullerenes have much weaker THG efficiency than those of the copolymers, we could readily map the copolymer/fullerene blend films that showed interpenetrating micron-sized grains of the two constituents. In addition, we also found second harmonic generation from various micron-sized defects in the films that are formed during film deposition or light illumination at ambient conditions, which do not possess inversion symmetry. The MPM method is therefore beneficial for organic films and devices for investigating the properties and growth of copolymer/fullerene blends for OPV applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.8b11378DOI Listing

Publication Analysis

Top Keywords

π-conjugated copolymers
12
copolymer/fullerene blends
12
multiphoton microscopy
8
organic photovoltaic
8
films
8
films π-conjugated
8
copolymers fullerene
8
fullerene blends
8
blend films
8
mapping films
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!