Black phosphorus (BP) has attracted much attention as a new member of 2D materials due to its unique electronic and optical properties and a wide range of promising applications. Here, for the first time, we report the photoluminescence lifetime of BP nanomaterial and its applications as an efficient agent for live cell imaging. With a lateral size of ∼35 nm and a thickness of ∼6 nm, the fabricated BP nanoparticles (BPNPs) exhibited a unique photoluminescent (PL) emission at ∼690 nm. The photoluminescence lifetime (PLT) of BPNPs was determined to be 110.5 ps. Coating a layer of mesoporous silica on the surface of BPNPs (BPNPs@mSiO) extended the lifetime to 267 ps, suggesting a change in the microenvironment. The lifetime was also influenced by ionic strength and intracellular microenvironment, which implies BPNPs as valuable probes for sensing variations in the microenvironment. Live cell imaging was achieved via directly probing the photoluminescence intensity or the photoluminescence lifetime. Our findings are significant, implying that BPNPs can be of large value in sensing variations of the cellular microenvironment and in probing cells with distinct cytosolic contents. This research leads to promising prospects for BPNPs in multiple biomedical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.8b11648 | DOI Listing |
J Fluoresc
January 2025
Department of Physics, Jnana Bharathi Campus, Bangalore University, Bengaluru, 560056, India.
This investigation delves into the extraction of polyphenols from the flowers of Tabebuia rosea using a basic maceration approach with acetone, ethanol, and methanol as solvents. The spectroscopic analysis of the dye obtained confirms the existence of functional groups in the polyphenol extract. The study also explores optoelectronic, fluorescence, and photometric characteristics associated with polyphenols.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 East Gate City Boulevard, Greensboro, NC 27401, USA.
Facile phase selective synthesis of copper antimony sulphide (CAS) nanostructures is important because of their tunable photoconductive and electrochemical properties. In this study, off-stoichiometric famatinite phase CAS (CAS) quasi-spherical and quasi-hexagonal colloidal nanostructures (including nanosheets) of sizes, 2.4-18.
View Article and Find Full Text PDFAnal Chem
January 2025
State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
Small molecule near-infrared (NIR) fluorophores play a critical role in disease diagnosis and early detection of various markers in living organisms. To accelerate their development and design, a deep learning platform, NIRFluor, was established to rapidly screen small molecule NIR fluorophores with the desired optical properties. The core component of NIRFluor is a state-of-the-art deep learning model trained on 5179 experimental big data.
View Article and Find Full Text PDFNanoscale Adv
January 2025
Université de Lorraine, CNRS, LRGP F-54000 Nancy France
Water-dispersible core/shell CuInZnSe/ZnS (CIZSe/ZnS) quantum dots (QDs) were efficiently synthesized under microwave irradiation using -acetylcysteine (NAC) and sodium citrate as capping agents. The photoluminescence (PL) emission of CIZSe/ZnS QDs can be tuned from 593 to 733 nm with varying the Zn : Cu molar ratio in the CIZSe core. CIZSe/ZnS QDs prepared with a Zn : Cu ratio of 0.
View Article and Find Full Text PDFLoading with non-metal cocatalysts to regulate interfacial charge transfer and separation has become a prominent focus in current research. In this study, g-CN/CNT composites loaded with non-metallic cocatalysts were prepared through pyrolysis using urea and CNTs. Various characterization techniques, including transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS), photoelectrochemical (PEC) analysis, fluorescence lifetime spectroscopy (TRPL), electron paramagnetic resonance spectroscopy (ESR), and photoluminescence (PL) spectroscopy, were employed to analyze the sample's microstructure, phase composition, elemental chemical states, and photoelectronic properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!