Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Unlabelled: Despite existent fortification initiatives in the Philippines, approximately 50% of the population still suffers from iron deficiency anemia (IDA), mainly in rural areas. Fortification of staple foods has been proved successful in China and Vietnam. Coconut spiced vinegar (SV) is an inexpensive, widely available, and culturally acceptable condiment in Filipino households; however, no technical evidence exists on its potential as fortification vehicle. This study aimed to physicochemically characterize and evaluate the consumer acceptability of SV fortified with ferrous sulfate (FS), ferrous fumarate (FF), or sodium iron ethylenediaminetetraacetate (NaFeEDTA) at 0.2 mg Fe/mL. Iron fortificants were added directly to SV, vortexed, and stored for analysis. A nonfortified SV served as a control. Physicochemical analyses (pH, titratable acidity, color, turbidity, and iron recovery) were conducted from 0 to 6 months postfortification. Consumer acceptability (9-point hedonic scale: color, appearance, aroma, sourness, and overall acceptability) was conducted using 1-month fortified vinegar in 96 students and 27 women. Iron recovery of fortified samples was high and similar (>97%) after 3 days of fortification and remained >87% at 6 months postfortification. All samples had minimum acidity of 5.31% and pH between 3.12 and 3.3. Color difference against the control followed the next order: SV-NaFeEDTA < SV-FS = SV-FF. Among students, acceptability of SV-FS and SV-FF were lower than the control and SV-NaFeEDTA for all attributes (P < 0.05) except aroma. In women, overall acceptability and aroma were not different among samples (P > 0.05). Overall, SV-NaFeEDTA had similar acceptability to the control, and was the most accepted fortified vinegar. SV-NaFeEDTA shows potential (in terms of physicochemical stability and consumer acceptability) to be used as an iron-delivery vehicle to address IDA.
Practical Application: The present study addresses the technical and organoleptic challenges of fortifying Filipino spiced vinegar with three iron sources. About 50% of the Filipino population (especially women and children) still suffers from iron deficiency, thus, more effective ways to deliver iron are needed. If successful, our study could pose as the base milestone for implementing mass iron fortification of spiced vinegar, given its frequent consumption and reach of all socioeconomic pockets of the Filipino population. Our aim is to improve the overall nutritional health of at-risk populations, and our study is one step closer to achieve this goal.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1750-3841.14327 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!