Adipocyte biology: It is time to upgrade to a new model.

J Cell Physiol

Division of Endocrinology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Parow, South Africa.

Published: March 2019

Globally, the obesity pandemic is profoundly affecting quality of life and economic productivity, but efforts to address this, especially on a pharmacological level, have generally proven unsuccessful to date, serving as a stark demonstration that our understanding of adipocyte biology and pathophysiology is incomplete. To deliver better insight into adipocyte function and obesity, we need improved adipocyte models with a high degree of fidelity in representing the in vivo state and with a diverse range of experimental applications. Adipocyte cell lines, especially 3T3-L1 cells, have been used extensively over many years, but these are limited in terms of relevance and versatility. In this review, I propose that primary adipose-derived stromal/stem cells (ASCs) present a superior model with which to study adipocyte biology ex vivo. In particular, ASCs afford us the opportunity to study adipocytes from different, functionally distinct, adipose depots and to investigate, by means of in vivo/ex vivo studies, the effects of many different physiological and pathophysiological factors, such as age, body weight, hormonal status, diet and nutraceuticals, as well as disease and pharmacological treatments, on the biology of adipocytes and their precursors. This study will give an overview of the characteristics of ASCs and published studies utilizing ASCs, to highlight the areas where our knowledge is lacking. More comprehensive studies in primary ASCs will contribute to an improved understanding of adipose tissue, in healthy and dysfunctional states, which will enhance our efforts to more successfully manage and treat obesity.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.27266DOI Listing

Publication Analysis

Top Keywords

adipocyte biology
12
adipocyte
6
ascs
5
biology time
4
time upgrade
4
upgrade model
4
model globally
4
globally obesity
4
obesity pandemic
4
pandemic profoundly
4

Similar Publications

Brown adipocytes are characterized by a high abundance of mitochondria, allowing them to consume fatty acids for heat production. Increasing the number of brown adipocytes is considered a promising strategy for combating obesity. However, the molecular mechanisms underlying their differentiation remain poorly understood.

View Article and Find Full Text PDF

Constitutively active receptor ADGRA3 signaling induces adipose thermogenesis.

Elife

December 2024

Shenzhen Key Laboratory of Systems Medicine for inflammatory diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China.

The induction of adipose thermogenesis plays a critical role in maintaining body temperature and improving metabolic homeostasis to combat obesity. β3-adrenoceptor (β3-AR) is widely recognized as a canonical β-adrenergic G-protein-coupled receptor (GPCR) that plays a crucial role in mediating adipose thermogenesis in mice. Nonetheless, the limited expression of β3-AR in human adipocytes restricts its clinical application.

View Article and Find Full Text PDF

In obesity, C-C chemokine ligand 2 (CCL2) plays a critical role in recruiting macrophages to white adipose tissue (WAT), contributing to chronic inflammation. In this study, we sought to explore the effects of fish oil (FO) on CCL2 expression and histone (H3K27)-modifying enzymes in both human model of preadipocytes and primary adipose-derived stem cells (ASCs). Present findings in preadipocytes lineage evidenced that lipopolysaccharide (LPS) increased (∼5.

View Article and Find Full Text PDF

Mesenchymal Stromal Cell (MSC) Isolation and Induction of Acute and Replicative Senescence.

Methods Mol Biol

December 2024

Department of Experimental Medicine, Biotechnology, and Molecular Biology Section, Luigi Vanvitelli Campania University, Naples, Italy.

Mesenchymal stromal cells (MSCs) are a heterogeneous population of non-hematopoietic adult stem cells derived from the embryonic mesoderm. They possess self-renewal and multipotent differentiation capabilities, allowing them to give rise to mesodermal cell types, such as osteoblasts, chondroblasts, and adipocytes, as well as non-mesodermal cells, including neuron-like cells and endothelial cells. MSCs play a vital role in maintaining homeostasis across various tissues by facilitating tissue repair, immune regulation, and inflammatory response balance.

View Article and Find Full Text PDF

Matrix Metalloproteinase-2 as a novel regulator of glucose utilization by adipocytes.

bioRxiv

December 2024

Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, United States.

Glucose transporter 4 (GLUT4) expression on white adipocytes is critical for absorbing excess blood glucose, failure of which promotes hyperglycemia. Matrix metalloproteinases (MMPs) play a crucial role in remodeling the white adipose tissue (WAT) during obesity. MMPs have multiple protein substrates, and surprisingly, it is unknown if they can directly target GLUT4 on the adipocyte surface and impair glucose absorption.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!