A therapeutic reduced graphene oxide (RGO) is synthesized by using fucoidan (Fu) as the reducing and surface functionalizing agent. The synthesized Fu-RGO exhibits promising characteristics for therapeutic applications such as high dispersity in aqueous media, biocompatibility, selective cytotoxicity to cancer cells, high loading capacity of the anticancer drug, and photothermal conversion effect. Therefore, Fu-GO is successfully harnessed as a combinatorial cancer treatment platform through bio-functional (Fu), chemo (doxorubicin (Dox)) and photothermal (RGO with near-infrared irradiation) modalities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/aadfa5 | DOI Listing |
Nat Commun
January 2025
Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA.
The extensive application of graphene nanosheets (GNSs) has raised concerns over risks to sensitive species in the aquatic environment. The humic acid (HA) corona is traditionally considered to reduce GNSs toxicity. Here, we evaluate the effect of sorbed HA (GNSs-HA) on the toxicity of GNSs to Gram positive Bacillus tropicus.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), West Blvd. Azadi Sports Complex, P.O. Box 14665, 1998 Tehran, Iran.
Herein, a novel nanocomposite was developed to adjust the textural properties of metal-organic frameworks (MOFs) for adsorptive applications. To this end, nitrogen-doped carbon quantum dots/reduced graphene oxide nanocomposite (RC) was embedded into MIL-101(Cr) crystals, named RC-ML-x nanocomposites. The prepared nanoadsorbents were thoroughly characterized by different techniques.
View Article and Find Full Text PDFHeliyon
November 2024
Faculty of Physics, Shahrood University of Technology, 3619995161, Shahrood, Iran.
This study evaluates the deposition of diamond-like carbon (DLC) films with copper impurities on a glass substrate using simultaneous direct current (DC) and radio frequency (RF) magnetron sputtering. The structural, optical, electrical, and mechanical properties, as well as the surface topography of the films, were investigated under various DC power levels using Raman spectroscopy, ellipsometry, UV-VIS, I-V measurements, nanoindentation, AFM, and FESEM. Results indicate that increasing the DC power to the graphite target from 60 to 120 , while maintaining a constant 10 of RF power to the copper target, enhances the optical absorption coefficient of the films and increases the optical bandgap from 0.
View Article and Find Full Text PDFSmall
January 2025
Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada.
Research into flexible solid-state supercapacitors for wearable electronics focuses on achieving high performance and safety. Gel polymer electrolytes (GPEs) are preferred over fully solid-state electrolytes due to their better ionic conductivity while addressing safety concerns associated with liquid electrolytes. This study aims to enhance high-performance gel polymer electrolytes (HP-GPEs) by improving the ion transfer rate of polyvinyl alcohol (PVA) with sulfonated hexagonal boron nitride (known as white-graphene) and exploring how rheology influences ion-conduction within HP-GPEs.
View Article and Find Full Text PDFAdv Mater
January 2025
Institute for Superconducting & Electronic Materials (ISEM), Faculty of Engineering and Information Sciences, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2500, Australia.
During fast-charging, uneven lithium plating on the surface of commercial graphite anode impedes the electrochemical performance of lithium-ion batteries, causing a safety issue. The formation of a passivation layer, the solid-electrolyte interphase (SEI), due to side reactions with the organic electrolyte, correlates with long-term cycling performance under fast-charging conditions, necessitating comprehensive analysis. Herein, it is demonstrated that a molybdenum disulfide (MoS) coating on natural graphite (NG) modulates the properties of the SEI layer, enabling reduction of the charging time and the enhancement of long-term cycling performance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!