We report an enantioconvergent approach for the functionalization of enamides at the β-carbon atom, which involves a chiral Brønsted acid induced tautomerization of 2-amidoallyl into 1-amidoallyl cations. These putative reactive intermediates were produced by ionization of racemic α-hydroxy enamides with a chiral Brønsted acid and captured with substituted indoles in a highly regio- and enantioselective manner.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6407611 | PMC |
http://dx.doi.org/10.1002/anie.201808764 | DOI Listing |
J Org Chem
January 2025
Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India.
An efficient deuteration method through the ex situ generation of D for the reductive deuteration of biologically significant α-substituted acrylic acids and enamide derivatives is reported. This method was successfully applied to the synthesis of deuterated analogs of marketed NSAIDs such as ibuprofen, flurbiprofen, and naproxen. Additionally, it facilitates late-stage deuteration of enamides and -vinylated drugs.
View Article and Find Full Text PDFJ Org Chem
January 2025
School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China.
A novel regioselective manganese(III)-mediated radical cascade cyclization of N-propargyl enamides with various H-phosphine oxides, H-phosphinates and H-phosphonates was developed. Mechanistic studies show that the reaction is mainly composed of the selective addition of phosphonyl radical to C≡C bond and the intramolecular 6--trig cyclization of vinyl radical. Utilizing this protocol, we successfully synthesized a diverse range of 3-phosphorylpyridines in high efficiency with good functional group compatibility and simple operation.
View Article and Find Full Text PDFCurr Org Synth
January 2025
Department of Chemistry, GITAM School of Science, GITAM (Deemed to be University), Hyderabad, Telangana, 502329, India.
Introduction: The origin, synthesis, characterization and docking studies of (Z)-7-((1R,2R,3R,5S)-3,5-dihydroxy-2-((R,1E,4E)-3-hydroxy-5-phenylpenta-1,4-dien-1-yl)cyclopentyl)-N-ethylhept-5-enamide, an impurity generated in the preparation of an anti-glaucoma agent-Bimatoprost has been described.
Methods: This impurity was controlled by employing 30% Pd/C, and the impurity level was brought to the permissible level, i.e.
Org Lett
January 2025
School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China.
An iron(III)-mediated nucleophilic cascade cyclization of -propiolyl enamides with various diselenides was developed, which provides an efficient way to construct seleno-heterocycles. A mechanism study shows that the cascade process involves the selective addition of diselenides to the C≡C bond generating a seleniranium ion, followed by an intramolecular nucleophilic attack of enaminic carbon of tertiary enamide. Utilizing this protocol, a variety of 3-seleno-2-pyridones were successfully synthesized featuring good functional group compatibility and simple operation.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Department of Chemistry and Chemistry Institution for Functional Materials, Pusan National University, Busan 46241, Republic of Korea.
ConspectusControlling selectivity through manipulation of reaction intermediates remains one of the most enduring challenges in organic chemistry, providing novel solutions for selective C-C π-bond functionalization. This approach, guided by activation principles, provides an effective method for selective functional group installation, enabling direct synthesis of organic molecules that are inaccessible through conventional pathways. In particular, the selective functionalization of N-conjugated allenes and alkynes has emerged as a promising research focus, driven by advances in controlling reactive intermediates and activation strategies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!