Introduction: The methanol (MeOH) leaf extracts of the species Faramea bahiensis, F. hyacinthina and F. truncata (Rubiaceae) have previously shown in vitro non-cytotoxic and anti-dengue virus serotype 2 (DENV2) activities in human hepatocarcinoma cell lineage (HepG2). Chemical studies have led to the isolation of major flavonoids, but quite complex fractions of phenolic compounds still remain.

Objective: To complete the study of phenolic compounds in the leaves and to access the presence of these compounds in the stems of these Faramea spp. by online high-performance liquid chromatography-diode array detector-electrospray ionisation tandem mass spectrometry (HPLC-DAD-ESI-MS/MS), as well as to evaluate the in vitro cytotoxic and anti-DENV2 activities of their MeOH stem extracts.

Methodology: The identification was performed by comparing retention times, UV and mass spectra with those of available standards and by using the mechanisms and fragmentation patterns established in previous studies. The effects of the extracts in DENV2 infected HepG2 cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The virus titer was quantified by plaque assay.

Results: The study led to the characterisation of 31 phenolic compounds including flavonoid O- and C-glycosides, phenolic acids and one coumarin. The stem extracts from F. hyacinthina and F. bahiensis presented a similar bioactivity to those of their leaves but a loss of cytoprotective activity of F. bahiensis and a higher cytotoxicity of F. truncata were observed.

Conclusions: This research allowed a detailed phenolic composition of three bioactive Faramea species to be achieved, thus contributing to the study of this genus and providing valuable information for further phytotherapeutic applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/pca.2790DOI Listing

Publication Analysis

Top Keywords

phenolic compounds
12
anti-dengue virus
8
faramea species
8
phenolic
5
comprehensive characterisation
4
characterisation polyphenols
4
polyphenols leaves
4
leaves stems
4
stems three
4
three anti-dengue
4

Similar Publications

Comment on "Stability and degradation mechanism of (-)-epicatechin in thermal processing".

Food Chem

January 2025

Poznań University of Technology, Institute of Chemistry and Technical Electrochemistry, Berdychowo 4, 60-965 Poznań, Poland. Electronic address:

Catechins, due to their high antioxidant capacity, are ones of the most common ingredients of human diet (e.g. tea, fruits, cacao) of the well-known health benefit properties.

View Article and Find Full Text PDF

Advancing anthocyanin extraction: Optimising solvent, preservation, and microwave techniques for enhanced recovery from merlot grape Marc.

Food Chem

December 2024

Wine Science Programme, School of Chemical Sciences, The University of Auckland | Waipapa Taumata Rau, 23 Symonds Street, Auckland 1010, New Zealand. Electronic address:

Grape marc, a by-product of winemaking, is a rich source of bioactive compounds, yet efficient extraction methods suitable for industrial application remain underexplored. This study presents an integrated, three-stage approach to optimise the extraction of anthocyanins, phenolics, and tannins from Merlot grape marc. In the first stage, 12 solvents were evaluated using conventional solvent extraction, with 50 % ethanol (EtOH) acidified with hydrochloric acid (HCl) achieving the highest anthocyanin recovery after eight extraction cycles (0.

View Article and Find Full Text PDF

Efficacy of silver nanoparticles (NPs) and fungal elicitors on the curcuminoid production in Curcuma longa L.

Plant Physiol Biochem

January 2025

Department of Plantation Products, Spices & Flavour Technology, CSIR-Central Food Technological Research Institute, Mysuru, 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India. Electronic address:

This study investigates the effects of silver nanoparticles (Ag NPs), biogenic silver nanoparticles derived from Rhizopus spp. (R.Ag NPs), and Rhizopus (R) elicitors on the yield and bioactive compounds of turmeric (Curcuma longa) using foliar spray and rhizome dipping techniques.

View Article and Find Full Text PDF

Alginate oligosaccharide induces resistance against Penicillium expansum in pears by priming defense responses.

Plant Physiol Biochem

January 2025

School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China. Electronic address:

The research intended to explore the control ability of alginate oligosaccharide (AOS) on Penicillium expansum infection in pear fruit by priming response and its mechanism. The results showed that 100 mg L AOS treatment could significantly reduce the incidence of postharvest blue mold and the lesion diameter in pear fruits and maintain their quality. The defense responses induced by AOS treatment alone were relatively mild in pear fruits.

View Article and Find Full Text PDF

Honey is a valuable natural product with antioxidant properties, and its quality is influenced by various factors, including botanical origin and biofortification. Pine bud extracts, known for their antioxidant capacity, were explored to enhance the properties of acacia and polyflower honey. This study aimed to investigate the effect of pine bud extracts at different maturation stages on the moisture content, dry matter, antioxidant activity, and total phenolic content (TPC) of acacia and polyflower honey.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!