Misdiagnosis of mycorrhizas and inappropriate recycling of data can lead to false conclusions.

New Phytol

Natural History Museum, University of Tartu, 14a Ravila, Tartu, 50411, Estonia.

Published: January 2019

We draw attention to a worrying trend for the uncritical use of 'recycled' mycorrhizal data to compile host species lists that include obvious errors or undertake risky analyses that correlate mycorrhizal colonisation levels with environmental or physiological factors despite inherent limitations in datasets. We are not suggesting that all meta-studies are wrong, only that more care should be taken to resolve what can safely be done with recycled mycorrhizal data in the future. We also recommend that mycorrhizal species lists should be checked against standard references since the majority of EM hosts and NM plant belong to families that are well resolved. However, additional research is required in cases where plant families have multiple root types within genera or occur in habitats where mycorrhizal associations are often suppressed (see Brundrett & Tedersoo, 2018). We hope that the mycorrhizal science community will work together more closely in the future to develop and enforce standards for mycorrhizal diagnosis and to share carefully corrected datasets for realistic meta-studies.

Download full-text PDF

Source
http://dx.doi.org/10.1111/nph.15440DOI Listing

Publication Analysis

Top Keywords

mycorrhizal data
8
species lists
8
mycorrhizal
7
misdiagnosis mycorrhizas
4
mycorrhizas inappropriate
4
inappropriate recycling
4
recycling data
4
data lead
4
lead false
4
false conclusions
4

Similar Publications

It is well known that individual pea ( L.) cultivars differ in their symbiotic responsivity. This trait is typically manifested with an increase in seed weights, due to inoculation with rhizobial bacteria and arbuscular mycorrhizal fungi.

View Article and Find Full Text PDF

and Fungi Improve Performance of Plants Grown in Sandy Substrate with Added Sewage Sludge.

J Fungi (Basel)

December 2024

Laboratorio de Biorremediación, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Casilla 54-D, Temuco 4811230, Chile.

The use of living organisms to treat human by-products, such as residual sludge, has gained interest in the last years. Fungi have been used for bioremediation and improving plant performance in contaminated soils. We investigated the impact of the mycorrhizal fungus (MF) and the saprophytic fungus (SF) on the survival and growth of seedlings cultivated in a sandy substrate supplemented with residual sludge.

View Article and Find Full Text PDF

The evolution of signaling and monitoring in plant-fungal networks.

Proc Natl Acad Sci U S A

January 2025

Department of Biology, University of Oxford, Oxford OX1 3SZ, United Kingdom.

Experiments have shown that when one plant is attacked by a pathogen or herbivore, this can lead to other plants connected to the same mycorrhizal network up-regulating their defense mechanisms. It has been hypothesized that this represents signaling, with attacked plants producing a signal to warn other plants of impending harm. We examined the evolutionary plausibility of this and other hypotheses theoretically.

View Article and Find Full Text PDF

Arbuscular mycorrhizal fungi (AMF, phylum Glomeromycota) are essential to plant community diversity and ecosystem functioning. However, increasing human land use represents a major threat to native AMF globally. Characterizing the loss of AMF diversity remains challenging because many taxa are undescribed, resulting in poor documentation of their biogeography and family-level disturbance sensitivity.

View Article and Find Full Text PDF

Lorchels, also known as false morels (Gyromitra sensu lato), are iconic due to their brain-shaped mushrooms and production of gyromitrin, a deadly mycotoxin. Molecular phylogenetic studies have hitherto failed to resolve deep-branching relationships in the lorchel family, Discinaceae, hampering our ability to settle longstanding taxonomic debates and to reconstruct the evolution of toxin production. We generated 75 draft genomes from cultures and ascomata (some collected as early as 1960), conducted phylogenomic analyses using 1542 single-copy orthologs to infer the early evolutionary history of lorchels, and identified genomic signatures of trophic mode and mating-type loci to better understand lorchel ecology and reproductive biology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!