Various single nucleotide polymorphisms have been reported to be associated with a higher risk of hepatocellular carcinoma in alcoholic cirrhotic patients. Until now, only common variants conferring a small increase in liver cancer risk have been identified. These inherited factors are able to modulate several biological pathways involved in alcohol-induced hepatocarcinogenesis, such as ethanol metabolism, inflammation, oxidative stress, or iron and lipid homeostasis. How the combination of these variants might collectively define an individual genomic risk prediction is currently being investigated. The other challenge in clinical practice lies in defining how to integrate this genetic information with other clinical parameters so as to refine selection of alcoholic cirrhotic patients according to various classes of hepatocellular carcinoma risk.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6095302 | PMC |
http://dx.doi.org/10.2217/hep.14.26 | DOI Listing |
Cancer Med
February 2025
Centre for Medical Research, Ningbo No.2 Hospital, Ningbo, China.
Background: Hepatocellular carcinoma (HCC) is one of the most common and highly lethal cancers worldwide. RIO kinase 1 (RIOK1), a protein kinase/ATPase that plays a key role in regulating translation and ribosome assembly, is associated with a variety of malignant tumors. However, the role of RIOK1 in HCC remains largely unknown.
View Article and Find Full Text PDFImmunol Cell Biol
January 2025
Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA.
Natural killer (NK) cells are emerging agents for cancer therapy. Several different cytokines are used to generate NK cells for adoptive immunotherapy including interleukin (IL)-2, IL-12, IL-15 and IL-18 in solution, and membrane-bound IL-21. These cytokines drive NK cell activation through the integration of signal transducers and activators of transcription (STAT) and nuclear factor-kappa B (NF-κB) pathways, which overlap and synergize, making it challenging to predict optimal cytokine combinations for both proliferation and cytotoxicity.
View Article and Find Full Text PDFTransl Oncol
January 2025
Department of Gastroenterology, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China. Electronic address:
Previous studies have demonstrated that intrahepatic cholangiocarcinoma (ICC) may derive from transdifferentiation of hepatocytes, so transforming ICC cells into hepatocytes could be a potential strategy for treating ICC. Hepatocyte nuclear factor 4α (HNF4α), a master transcription factor in the liver, has been demonstrated to induce the differentiation of hepatocellular carcinoma, while its effects on ICC remains unclear. Ivosidenib, an isocitrate dehydrogenase 1 (IDH1) inhibitor, is a novel targeted drug for ICC patients.
View Article and Find Full Text PDFOncogene
January 2025
Department of Liver Surgery and Shanghai Cancer Institute, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Overexpression of uridine-cytidine kinase 2 (UCK2), a key enzyme in the pyrimidine salvage pathway, is implicated in human cancer development, while its regulation under nutrient stress remains to be investigated. Here, we show that under glucose limitation, AMPK phosphorylates glycinamide ribonucleotide formyltransferase (GART) at Ser440, and this modification facilitates its interaction with UCK2. Through its binding to UCK2, GART generates tetrahydrofolate (THF) and thus inhibits the activity of integrin-linked kinase associated phosphatase (ILKAP) for removing AKT1-mediated UCK2-Ser254 phosphorylation under glucose limitation, in which dephosphorylation of UCK2-Ser254 tends to cause Trim21-mediated UCK2 polyubiquitination and degradation.
View Article and Find Full Text PDFMol Cell Probes
January 2025
Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea. Electronic address:
Despite numerous attempts to understand the molecular mechanisms behind the development of liver cancer, it continues to pose a significant worldwide health challenge. Transcriptome sequencing, a powerful tool in molecular biology, has played a pivotal role in uncovering the intricate gene expression profiles underlying hepatocellular carcinoma (HCC). In the present study, we identified a total of 808 differentially expressed genes (DEGs), with 584 exhibiting downregulation, and 224 showing upregulation following apigetrin treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!