Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Differential induction therapy of all subtypes of acute myeloid leukemia other than acute promyelocytic leukemia is impeded by the long time required to complete complex and diverse cytogenetic and molecular genetic analyses for risk stratification or targeted treatment decisions. Here, we describe a reliable, rapid and sensitive diagnostic approach that combines karyotyping and mutational screening in a single, integrated, next-generation sequencing assay. Numerical karyotyping was performed by low coverage whole genome sequencing followed by copy number variation analysis using a novel algorithm based on -generated reference karyotypes. Translocations and DNA variants were examined by targeted resequencing of fusion transcripts and mutational hotspot regions using commercially available kits and analysis pipelines. For the identification of internal tandem duplications and partial tandem duplications, we adapted previously described tools. In a validation cohort including 22 primary patients' samples, 9/9 numerically normal karyotypes were classified correctly and 30/31 (97%) copy number variations reported by classical cytogenetics and fluorescence hybridization analysis were uncovered by our next-generation sequencing karyotyping approach. Predesigned fusion and mutation panels were validated exemplarily on leukemia cell lines and a subset of patients' samples and identified all expected genomic alterations. Finally, blinded analysis of eight additional patients' samples using our comprehensive assay accurately reproduced reference results. Therefore, calculated karyotyping by low coverage whole genome sequencing enables fast and reliable detection of numerical chromosomal changes and, in combination with panel-based fusion-and mutation screening, will greatly facilitate implementation of subtype-specific induction therapies in acute myeloid leukemia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6355503 | PMC |
http://dx.doi.org/10.3324/haematol.2018.194258 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!