Almost all present biological processes for treating municipal wastewater have been developed based on the philosophy of biological oxidation with high energy consumption and generation of waste sludge. Given such a situation, the fundamental question of what are the possible ways towards energy self-sufficient biological reclamation of municipal wastewater needs to be addressed urgently. Therefore, this review aims to offer a critical view and a holistic analysis of biological treatment processes with the focus on energy self-sufficiency which indeed is a game changer in the future technology development. The way towards energy self-sufficient operation of biological processes is to maximize energy recovery, while to minimize energy consumption. The examples of such process configurations known as A-B processes are thus discussed. Consequently, this review may offer in-depth insights into the possible directions towards the next-generation biological processes for municipal wastewater reclamation which should be designed as a water-energy-resource factory.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2018.08.104 | DOI Listing |
Water Res
January 2025
School of Chemical Engineering, The University of Queensland, St. Lucia, QLD 4067, Australia.
Urban water utilities are significant energy users and also key actors in decarbonisation. However, the integrated perspective of urban water supply and wastewater system emissions, the relevant driving forces, and the boundaries of inclusions or exclusions, are rarely discussed. This is due to widely disaggregated data, and complex issues regarding the boundary of the system being investigated.
View Article and Find Full Text PDFSci Total Environ
January 2025
Uppsala Water and Waste Ltd, Box 1444, 751 44 Uppsala, Sweden.
Pharmaceuticals and per- and polyfluoroalkyl substances (PFAS) are persistent organic micropollutants (OMPs) posing environmental and health risks due to their bioaccumulative nature and potential toxicity. These OMPs spread to the environment due to the extensive use in today's society. Conventional wastewater treatment plants (WWTPs) are not designed to effectively remove these contaminants, making WWTPs an important pathway, especially for pharmaceuticals, to the aquatic environment.
View Article and Find Full Text PDFEnviron Int
January 2025
Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Queensland 4102, Australia.
Allergies have become an important public health issue as their occurrence is reportedly on the rise around the world. Exposure to environmental factors is considered as trigger for allergic diseases. However, there was limited data on the importance of each factor, particularly in China.
View Article and Find Full Text PDFBull Environ Contam Toxicol
January 2025
Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
Ciprofloxacin (CIP) and oxytetracycline (OTC) are commonly detected antibiotic species in breeding wastewater, and microalgae-based antibiotic treatment technology is an environmentally friendly and cost-effective method for its removal. This study evaluated the effects of CIP and OTC on Scenedesmus sp. in the breeding wastewater tailwater and the removal mechanisms of antibiotics.
View Article and Find Full Text PDFAntibiotics (Basel)
January 2025
Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, 3015 GD Rotterdam, The Netherlands.
: The global spread of carbapenem-resistant (CRPA) warrants collaborative action. Guidance should come from integrated One Health surveillance; however, a surveillance strategy is currently unavailable due to insufficient knowledge on the sources and transmission routes of CRPA. The aim of the SAMPAN study ("A Smart Surveillance Strategy for Carbapenem-resistant ") is to develop a globally applicable surveillance strategy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!