Ectopic vascularized bone formation by human umbilical cord-derived mesenchymal stromal cells expressing bone morphogenetic factor-2 and endothelial cells.

Biochem Biophys Res Commun

Department of Medicine, Sungkyunkwan University School of Medicine, Gyeonggi, Republic of Korea; Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea.

Published: September 2018

Mesenchymal stromal cells (MSCs) isolated from numerous tissues including human fetal tissue are currently used in cell therapy and regenerative medicine. Among fetal tissues, the umbilical cord (UC) is one of the sources for both MSCs and endothelial cells (ECs). To establish ectopic vascularized bone tissue formation, UC-derived MSCs and ECs were isolated. UC-MSCs expressing human BMP-2 (hBMP-2-MSCs) were generated using an adenoviral system to promote bone formation. These cells were then transplanted with Matrigel into the subcutaneous tissue of an immune deficient NSG mouse, and bone tissue was analyzed after several weeks. The osteogenic differentiation ability of MSCs was elevated by transduction of the hBMP-2 expressing adenoviral system, and vascularization of bone tissue was enhanced by human umbilical vein endothelial cells (HUVEC). In this study, our results provide evidence that MSCs and HUVECs from human umbilical cord are suitable cells to investigate bone tissue engineering. The results also suggest that the co-transplantation of hBMP2-MSCs and HUVECs may be a simple and efficient strategy for improving tissue generation and angiogenesis in bone tissue engineering using stem cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2018.08.179DOI Listing

Publication Analysis

Top Keywords

bone tissue
20
human umbilical
12
endothelial cells
12
ectopic vascularized
8
bone
8
vascularized bone
8
bone formation
8
mesenchymal stromal
8
cells
8
stromal cells
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!