The roles of aromatic residues in the glycine receptor transmembrane domain.

BMC Neurosci

Department of Biochemistry, University of Cambridge, Cambridge, UK.

Published: September 2018

Background: Cys-loop receptors play important roles in fast neuronal signal transmission. Functional receptors are pentamers, with each subunit having an extracellular, transmembrane (TM) and intracellular domain. Each TM domain contains 4 α-helices (M1-M4) joined by loops of varying lengths. Many of the amino acid residues that constitute these α-helices are hydrophobic, and there has been particular interest in aromatic residues, especially those in M4, which have the potential to contribute to the assembly and function of the receptor via a range of interactions with nearby residues.

Results: Here we show that many aromatic residues in the M1, M3 and M4 α-helices of the glycine receptor are involved in the function of the receptor. The residues were explored by creating a range of mutant receptors, characterising them using two electrode voltage clamp in Xenopus oocytes, and interpreting changes in receptor parameters using currently available structural information on the open and closed states of the receptor. For 7 residues function was ablated with an Ala substitution: 3 Tyr residues at the extracellular end of M1, 2 Trp residues located towards the centers of M1 and M3, and a Phe and a Tyr residue in M4. For many of these an alternative aromatic residue restored wild-type-like function indicating the importance of the π ring. ECs were increased with Ala substitution of 8 other aromatic residues, with those in M1 and M4 also having reduced currents, indicating a role in receptor assembly. The structure shows many potential interactions with nearby residues, especially between those that form the M1/M3/M4 interface, and we identify those that are supported by the functional data.

Conclusion: The data reveal the importance and interactions of aromatic residues in the GlyR M1, M3 and M4 α-helices, many of which are essential for receptor function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6127993PMC
http://dx.doi.org/10.1186/s12868-018-0454-8DOI Listing

Publication Analysis

Top Keywords

aromatic residues
20
residues
11
receptor
8
glycine receptor
8
function receptor
8
interactions nearby
8
receptor residues
8
ala substitution
8
aromatic
5
function
5

Similar Publications

MarE, a heme-dependent enzyme, catalyzes a unique 2-oxindole-forming monooxygenation reaction from tryptophan metabolites. To elucidate its enzyme-substrate interaction mode, we present the first X-ray crystal structures of MarE in complex with its prime substrate, (2S,3S)-β-methyl-L-tryptophan and cyanide at 1.89 Å resolution as well as a truncated yet catalytically active version in complex with the substrate at 2.

View Article and Find Full Text PDF

Arsenic-resistant Klebsiella oxytoca strain AT-02 was isolated from the ground water of the Multan region of Pakistan. The strain displayed high arsenite and arsenate resistance as minimal inhibitory concentration (MIC) was 600ppm and 10,000ppm respectively. The high tolerance of the isolated strain towards arsenate can be postulated due to significant increase in biofilm in response to arsenate.

View Article and Find Full Text PDF

Mononuclear non-heme iron enzymes catalyze a wide array of important oxidative transformations. They are correspondingly diverse in both structure and mechanism. Despite significant evolutionary distance, it is becoming increasingly apparent that these enzymes nonetheless illustrate a compelling case of mechanistic convergence the formation of peroxo species bridging metal and substrate.

View Article and Find Full Text PDF

Polycyclic aromatic compounds (PACs) are pervasive environmental contaminants derived from diverse sources including pyrogenic (e.g., combustion processes), petrogenic (e.

View Article and Find Full Text PDF

Kinetic and structural investigation of the 4-allyl syringol oxidase from Streptomyces cavernae.

Arch Biochem Biophys

January 2025

Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitaetsstrasse 150, 44780 Bochum, Germany.

4-Phenol oxidases are proposed to be involved in the utilization of lignin-derived aromatic compounds. While enzymes with selectivity towards 4-hydroxyphenyl and guaiacyl motifs are well described, we identified the first syringyl-specific oxidase from Streptomyces cavernae (Sc4ASO) only very recently. Here, in-depth studies were conducted to unravel the molecular origins of the outstanding selectivity of Sc4ASO.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!