A compact ultrawideband (UWB) antenna based on a hexagonal split-ring resonator (HSRR) is presented in this paper for sensing the pH factor. The modified HSRR is a new concept regarding the conventional square split-ring resonator (SSRR). Two HSRRs are interconnected with a strip line and a split in one HSRR is introduced to increase the electrical length and coupling effect. The presented UWB antenna consists of three unit cells on top of the radiating patch element. This combination of UWB antenna and HSRR gives double-negative characteristics which increase the sensitivity of the UWB antenna for the pH sensor. The proposed ultrawideband antenna metamaterial sensor was designed and fabricated on FR-4 substrate. The electrical length of the proposed metamaterial antenna sensor is 0.238 × 0.194 × 0.016 λ, where λ is the lowest frequency of 3 GHz. The fractional bandwidth and bandwidth dimension ratio were achieved with the metamaterial-inspired antenna as 146.91% and 3183.05, respectively. The operating frequency of this antenna sensor covers the bandwidth of 17 GHz, starting from 3 to 20 GHz with a realized gain of 3.88 dB. The proposed HSRR-based ultrawideband antenna sensor is found to reach high gain and bandwidth while maintaining the smallest electrical size, a highly desired property for pH-sensing applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6163227 | PMC |
http://dx.doi.org/10.3390/s18092959 | DOI Listing |
Sensors (Basel)
December 2024
Electronics and Communication Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, India.
In short-range microwave imaging, the collection of data in real environments for the purpose of developing techniques for target detection is very cumbersome. Simultaneously, to develop effective and efficient AI/ML-based techniques for target detection, a sufficiently large dataset is required. Therefore, to complement labor-intensive and tedious experimental data collected in a real cluttered environment, synthetic data generation via cost-efficient electromagnetic wave propagation simulations is explored in this article.
View Article and Find Full Text PDFPLoS One
December 2024
Department of Electrical Engineering, Imam Khomeini Naval Science University of Nowshahr, Nowshahr, Iran.
This work presents a small four-port multiple-input multiple-output (MIMO) antenna for Ultra Wideband (UWB) applications. Four monopole radiating components make up the suggested antenna. Every monopole is positioned perpendicularly to the components that surround it.
View Article and Find Full Text PDFSci Rep
November 2024
PRINCE Laboratory Research, ISITcom, Hammam Sousse, University of Sousse, Sousse, Tunisia.
This paper presents an ultra-wideband (UWB) microstrip antenna with a simple structure operating at 2.2-6 GHz bandwidth. The proposed antenna has been demonstrated for its suitability in UWB and multi-band applications, such as wireless local area network (WLAN), Wi-Fi, 5G, Internet of Things (IoT), etc.
View Article and Find Full Text PDFPLoS One
November 2024
School of Computing and Communications, Lancaster University, Lancaster, United Kingdom.
The single-input-single-output technology experiences loss of data in the communication channel due to the receiving antenna undergoing fading of the signal impinged on it. Today's need is faster data transfer with multiple applications in the single antenna with multiple-identical radiating elements, leading to multiple-input-multiple-outputDWMB (MIMODWMB) technology. The MIMODWMB configuration with multi-band capability is the objective of the proposed work with applications ranging between microwave-millimeterWave bands.
View Article and Find Full Text PDFSci Rep
October 2024
Department of Electronic Engineering, Hanyang University, Seoul, 04763, South Korea.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!