A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Corpus callosum microstructure is associated with motor function in preschool children. | LitMetric

Corpus callosum microstructure is associated with motor function in preschool children.

Neuroimage

Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, 2500, University Drive NW, Calgary, AB, T2N 1N4, Canada; Department of Radiology, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada; Hotchkiss Brain Institute, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada. Electronic address:

Published: December 2018

The preschool period is a time of significant physical and behavioral growth, including the improvement of gross and fine motor skills. Although motor development has been comprehensively mapped from infancy to adulthood, the neural correlates associated with motor advancements during early childhood remain unclear. The current study used diffusion tensor imaging (DTI) to delineate key motor pathways and characterize their relationships with motor performance in 80 typically developing preschool children, aged 3-6 years. The Movement Assessment Battery for Children-2nd edition (MABC-II) was used to assess motor functioning. Partial correlations between DTI parameters and motor performance, controlling for sex and age, revealed a positive correlation between motor performance and fractional anisotropy of corpus callosum motor fibers, as well as negative correlations of motor performance with mean and radial diffusivity. These results appear to be driven by females, as correlations were significant in girls but not boys when analyzed separately. Mean corticospinal tract (CST) diffusion parameters were not significantly related to motor performance, but relationships were observed at regionally specific locations along the bilateral CST. These findings suggest preschool-aged children with better motor performance show more mature white matter patterns within motor pathways, and that the structural variation in these pathways may partially account for the natural variability in motor performance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2018.09.004DOI Listing

Publication Analysis

Top Keywords

motor performance
28
motor
15
corpus callosum
8
associated motor
8
preschool children
8
motor pathways
8
parameters motor
8
performance
7
callosum microstructure
4
microstructure associated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!