Real-world decisions have benefits occurring only later and dependent on additional decisions taken in the interim. We investigated this in a novel decision-making task in humans (n = 76) while measuring brain activity with fMRI (n = 24). Modeling revealed that participants computed the prospective value of decisions: they planned their future behavior taking into account how their decisions might affect which states they would encounter and how they themselves might respond in these states. They considered their own likely future behavioral biases (e.g., failure to adapt to changes in prospective value) and avoided situations in which they might be prone to such biases. Three neural networks in adjacent medial frontal regions were linked to distinct components of prospective decision making: activity in dorsal anterior cingulate cortex, area 8 m/9, and perigenual anterior cingulate cortex reflected prospective value, anticipated changes in prospective value, and the degree to which prospective value influenced decisions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6127030 | PMC |
http://dx.doi.org/10.1016/j.neuron.2018.08.018 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!