Operant over-responding is more sensitive than reversal learning for revealing behavioral changes after withdrawal from alcohol consumption.

Physiol Behav

Department of Psychological Sciences, Kansas State University, 492 Bluemont Hall, 1114 Mid-Campus Dr. North, Manhattan, KS, United States, 66506.. Electronic address:

Published: November 2018

In humans, prior alcohol use is linked with impulsivity and impaired decision-making, but the nature of this relationship is unclear. In a previous study in rats, we found that prior alcohol access led to over-responding in go/no-go discrimination training, but had no effect on discrimination learning. It was unclear whether this over-responding effect would occur in a reversal learning task, or whether prior alcohol would impair reversal learning in our task. In the present experiments, we determined whether six weeks of chronic intermittent alcohol access would induce over-responding or impair reversal learning in our task. Our task allowed for multiple responses/trial with limited reinforcement, so over-responding could be assessed. In Exp. 1, we gave three days of discrimination training prior to access to 20% alcohol or water, then reversed task contingencies starting 4 days after the end of alcohol access. In Exp. 2, we gave either three or six days of discrimination training prior to the same alcohol access and reversal learning procedures to determine if the original training length would affect alcohol's behavioral effects. We found no reversal learning deficits in either experiment. Across both experiments, we found that the Alcohol group exhibited over-responding to the active lever, but this effect was smaller than in our previous discrimination experiments. Our data suggest that there are behavioral changes after voluntary alcohol access that can be missed by some discrimination/reversal learning assessments, and our over-responding task can detect these transient changes. However, over-responding is more pronounced in discrimination than reversal learning.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6415664PMC
http://dx.doi.org/10.1016/j.physbeh.2018.08.021DOI Listing

Publication Analysis

Top Keywords

reversal learning
28
alcohol access
20
prior alcohol
16
discrimination training
12
learning task
12
alcohol
10
learning
9
behavioral changes
8
impair reversal
8
exp three
8

Similar Publications

The locus coeruleus (LC) plays a vital role in cognitive function through norepinephrine release. Impaired LC neuronal health and function is linked to cognitive decline during ageing and Alzheimer's disease. This study investigates age-related alterations in olfactory detection and discrimination learning, along with its reversal, in Long-Evans rats, and examines the effects of atomoxetine (ATM), a norepinephrine uptake inhibitor, on these processes.

View Article and Find Full Text PDF

Menopausal symptoms of sleep disturbances, cognitive deficits, and hot flashes are understudied, in part due to the lack of animal models in which they co-occur. Common marmosets (Callithrix jacchus) are valuable nonhuman primates for studying these symptoms, and we examined changes in cognition (reversal learning), sleep (48 h/wk of sleep recorded by telemetry), and thermoregulation (nose temperature in response to mild external warming) in middle-aged, surgically-induced menopausal marmosets studied at baseline, during 3-week phases of ethinyl estradiol (EE, 4 μg/kg/day, p.o.

View Article and Find Full Text PDF

Unsupervised tooth segmentation from three dimensional scans of the dental arch using domain adaptation of synthetic data.

Int J Med Inform

December 2024

Adelaide Dental School, University of Adelaide, Adelaide, SA5000, Australia; Research and Innovations, Dental Loop Pty Ltd, Adelaide, SA5000, Australia. Electronic address:

Background: The automated segmentation of individual teeth from 3D models of the human dental arch is challenging due to variations in tooth alignment, arch form and overall maxillofacial anatomy. Domain adaptation is a specialised technique in deep learning which allows models to adapt to data from different domains, such as varying tooth and dental arch forms, without requiring human annotations.

Purpose: This study aimed to segment individual teeth from various dental arch morphologies in 3D intraoral scans using domain adaptation.

View Article and Find Full Text PDF

The Morris Water Maze (MWM) is the most commonly used assay for evaluating learning and memory in laboratory mice. Despite its widespread use, contemporary reviews have highlighted substantial methodological variation in experimental protocols and that the associated testing procedures are acutely (each trial) and chronically (testing across days) stressful; stress impairs attention, memory consolidation and the retrieval of learned information. Moreover, the interpretation of behavior within the MWM is often difficult because of wall hugging, non-spatial swim strategies, floating, and jumping off the escape platform.

View Article and Find Full Text PDF

Do empirically-derived personality subtypes relate to cognitive inflexibility in anorexia nervosa and bulimia nervosa?

J Eat Disord

December 2024

Department of Psychiatry and Behavioral Neuroscience, University of Chicago, 5841 S. Maryland Avenue, MC 3077, Chicago, IL, 60637, USA.

Background: Accruing evidence suggests that personality-based approaches to eating disorder classification may offer several advantages over current diagnostic models, with prior research consistently identifying three personality-based groups characterized by either (1) high levels of impulsivity and dysregulation (termed the "undercontrolled" group), (2) high levels of rigidity and avoidance (termed the "overcontrolled" group), or (3) relatively normative levels of personality functioning (termed the "low psychopathology" group). Cognitive inflexibility (i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!