We studied the reaction of electronically excited sulfur dioxide in the triplet state (SO) with a variety of alkane species, including propane, n-butane, isobutane, n-pentane, n-hexane, cyclohexane, n-octane, and n-nonane. Reaction rate constants for the photoinitiated reaction of SO with all of these species were determined and found to be in the range from 3.7 × 10 to 5.1 × 10 cmmolecules. We found that reaction proceeds via a hydrogen abstraction to form HOSO• and organic radical (R•) species and that reactivity is correlated with the energy required to break a C-H bond and the length of the alkane chain. Abstraction rates were found to be fastest for reaction with hydrogen on a tertiary carbon. Similarly, abstraction from secondary carbons is found to be faster than from primary carbons. The reactivity of SO with alkanes increases with chain length as additional secondary carbons are added.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.8b04643 | DOI Listing |
Sci Rep
January 2025
Key Laboratory of Instrumentation Science, Dynamic Measurement of Ministry of Education, North University of China, Taiyuan, 030051, Shanxi, China.
This paper propose a significantly enhanced YOLOv8 model specifically designed for detecting tongue fissures and teeth marks in Traditional Chinese Medicine (TCM) diagnostic images. By integrating the C2f_DCNv3 module, which incorporates Deformable Convolutions (DCN), replace the original C2f module, enabling the model to exhibit exceptional adaptability to intricate and irregular features, such as fine fissures and teeth marks. Furthermore, the introduction of the Squeeze-and-Excitation (SE) attention mechanism optimizes feature weighting, allowing the model to focus more accurately on key regions of the image, even in the presence of complex backgrounds.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China. Electronic address:
Background: The rapid and sensitive detection of nitrite is important to human health protection due to its carcinogenic and teratogenic risks with excessive intake. The Griess assay is widely applied for the design of nitrite detection system. However, its relatively slow reaction kinetics and sole colorimetry mode might limit it's the sensitivity and practical application.
View Article and Find Full Text PDFTalanta
January 2025
College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China. Electronic address:
Dissolved gas analysis (DGA) is an effective method for diagnosing potential faults in oil-immersed power transformers. Metal oxide semiconductor (MOS) gas sensors exhibit excellent performance. However, high operating temperatures can accelerate device aging, thereby reducing the reliability of online monitoring.
View Article and Find Full Text PDFTalanta
January 2025
Department of Chemistry, School of Forensic Medicine, China Medical University, Shenyang, 110122, China. Electronic address:
Miniaturized optical emission spectrometric (OES) devices based on various microplasma excitation sources provide a reliable tool for in-situ elemental analysis. The key to improving analytical performance is enhancing the excitation capability of the microplasma source in these devices. Here, dielectric barrier discharge (DBD) and point discharge (PD) technologies are combined to construct an enhanced dual-stage excitation source (called DBD-PD), which improves the overall excitation efficiency and OES signal sensitivity.
View Article and Find Full Text PDFFood Chem
January 2025
Department of Chemistry, Faculty of Science, Marmara University, 34722 Istanbul, Turkey.
Within the scope of this study, a polymer-based optical sensor that can polymerize under UV radiation and produce fluorescence when suitable functional monomers and crosslinkers were prepared for aluminum determination in yogurt, soybean flour, and meat samples. Parameters such as operating range, pH, sensitivity, selectivity, determination limit, and foreign ion effect were thoroughly investigated to validate the developed method and characterize this polymer-based membrane. The designed sensor has wavelengths of 322 nm for fluorescence excitation and 356 nm for emission, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!