AI Article Synopsis

  • The study investigates how DNA replication and gene expression differ between cancerous and non-cancerous human cell types during development, revealing significant alterations in cancer.
  • Changes in replication fork directionality (RFD) are common, especially in GC-poor isochores, and are mostly independent of transcriptional changes; cancer cells exhibit RFD profiles similar to non-cancer cells from the same developmental origin.
  • Specifically, in chronic myeloid leukemia (CML), prolonged expression of the BCR-ABL1 oncogene leads to a significant shift in replication initiation zones, demonstrating a preference for downregulation and impacting the stability of certain DNA regions throughout cancer progression.

Article Abstract

The spatiotemporal program of metazoan DNA replication is regulated during development and altered in cancers. We have generated novel OK-seq, Repli-seq and RNA-seq data to compare the DNA replication and gene expression programs of twelve cancer and non-cancer human cell types. Changes in replication fork directionality (RFD) determined by OK-seq are widespread but more frequent within GC-poor isochores and largely disconnected from transcription changes. Cancer cell RFD profiles cluster with non-cancer cells of similar developmental origin but not with different cancer types. Importantly, recurrent RFD changes are detected in specific tumour progression pathways. Using a model for establishment and early progression of chronic myeloid leukemia (CML), we identify 1027 replication initiation zones (IZs) that progressively change efficiency during long-term expression of the BCR-ABL1 oncogene, being twice more often downregulated than upregulated. Prolonged expression of BCR-ABL1 results in targeting of new IZs and accentuation of previous efficiency changes. Targeted IZs are predominantly located in GC-poor, late replicating gene deserts and frequently silenced in late CML. Prolonged expression of BCR-ABL1 results in massive deletion of GC-poor, late replicating DNA sequences enriched in origin silencing events. We conclude that BCR-ABL1 expression progressively affects replication and stability of GC-poor, late-replicating regions during CML progression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6212843PMC
http://dx.doi.org/10.1093/nar/gky797DOI Listing

Publication Analysis

Top Keywords

dna replication
12
expression bcr-abl1
12
late-replicating regions
8
prolonged expression
8
gc-poor late
8
late replicating
8
replication
6
gc-poor
5
expression
5
developmental cancer-associated
4

Similar Publications

Hepatitis B virus hijacks MRE11-RAD50-NBS1 complex to form its minichromosome.

PLoS Pathog

January 2025

State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School, Wuhan University, Wuhan, China.

Chronic hepatitis B virus (HBV) infection can significantly increase the incidence of cirrhosis and liver cancer, and there is no curative treatment. The persistence of HBV covalently closed circular DNA (cccDNA) is the major obstacle of antiviral treatments. cccDNA is formed through repairing viral partially double-stranded relaxed circular DNA (rcDNA) by varies host factors.

View Article and Find Full Text PDF

Epstein-Barr nuclear antigen 1 (EBNA1), a sequence-specific DNA binding protein of Epstein-Barr virus (EBV), is essential for viral genome replication and maintenance and is therefore an attractive target for the therapeutic intervention of EBV-associated cancers. Several EBNA1-specific inhibitors have demonstrated the ability to block EBNA1 function in vitro, but practical delivery strategies for these inhibitors in vivo are still lacking. Here, we report an intelligent hierarchical targeting theranostic nanosystem (denoted as mZGOCS@MnO-P5) that integrates an azide (N3) terminal dual-targeting peptide (N3-P5), a tumor microenvironment-responsive degradable MnO nanosheet, and a mesoporous ZnGaO:Cr, Sn near-infrared persistent luminescence (NIR-PL) nanosphere (mZGOCS).

View Article and Find Full Text PDF

Cross-feeding involves microbes consuming exudates of other surrounding microbes, mediating elemental cycling. Characterizing the diversity of cross-feeding pathways in ocean microbes illuminates evolutionary forces driving self-organization of ocean ecosystems. Here, we uncover a purine and pyrimidine cross-feeding network in globally abundant groups.

View Article and Find Full Text PDF

The DNA adducts formed by the alkenylbenzene natural products, safrole (SF) and methyleugenol (MEG) are primarily attributed to their reported carcinogenic properties. Herein, we report a concise strategy to access -Ac-SF/MEG-dA phosphoramidites, which were selectively incorporated into DNA oligonucleotides by solid-phase DNA synthesis. The replication studies using human polymerases hpolκ and hpolη showed that both polymerases replicate these adducts error-free, which indicates that these polymerases do not contribute to the adduct-induced mutagenicity.

View Article and Find Full Text PDF

Background: Psychosis (broadly delusions and hallucinations) has a cumulative disease prevalence of around 40% in Alzheimer's disease (AD). The epigenomic, genomic, and neuropathological data provide powerful evidence that AD+P has a distinct neurobiological profile. Here, we used the weighted gene co-expression network analysis (WGCNA) method to investigate DNA methylation associated with AD+P in the dorsolateral prefrontal cortex of 153 post-mortem brain samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!