A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Deep UV Emission from Highly Ordered AlGaN/AlN Core-Shell Nanorods. | LitMetric

Deep UV Emission from Highly Ordered AlGaN/AlN Core-Shell Nanorods.

ACS Appl Mater Interfaces

Department of Electronic and Electrical Engineering, Centre of Nanoscience & Nanotechnology , University of Bath, Bath BA2 7AY , U.K.

Published: October 2018

Three-dimensional core-shell nanostructures could resolve key problems existing in conventional planar deep UV light-emitting diode (LED) technology due to their high structural quality, high-quality nonpolar growth leading to a reduced quantum-confined Stark effect and their ability to improve light extraction. Currently, a major hurdle to their implementation in UV LEDs is the difficulty of growing such nanostructures from Al GaN materials with a bottom-up approach. In this paper, we report the successful fabrication of an AlN/Al GaN/AlN core-shell structure using an original hybrid top-down/bottom-up approach, thus representing a breakthrough in applying core-shell architecture to deep UV emission. Various AlN/Al GaN/AlN core-shell structures were grown on optimized AlN nanorod arrays. These were created using displacement Talbot lithography (DTL), a two-step dry-wet etching process, and optimized AlN metal organic vapor phase epitaxy regrowth conditions to achieve the facet recovery of straight and smooth AlN nonpolar facets, a necessary requirement for subsequent growth. Cathodoluminescence hyperspectral imaging of the emission characteristics revealed that 229 nm deep UV emission was achieved from the highly uniform array of core-shell AlN/Al GaN/AlN structures, which represents the shortest wavelength achieved so far with a core-shell architecture. This hybrid top-down/bottom-up approach represents a major advance for the fabrication of deep UV LEDs based on core-shell nanostructures.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.8b10605DOI Listing

Publication Analysis

Top Keywords

deep emission
12
aln/al gan/aln
12
core-shell
8
core-shell nanostructures
8
gan/aln core-shell
8
hybrid top-down/bottom-up
8
top-down/bottom-up approach
8
core-shell architecture
8
optimized aln
8
deep
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!