Cytotoxic and genotoxic effect of (+) and (–) enantiomers of usnic acid in human peripheral blood lymphocytes studed. We have shown that the studied usnic acid enantiomers in concentrations of 0.04—0.30 mM have a pronounced cytotoxic effect. We have found that the enantiomers of usnic acid in concentrations 0.04—0.30 mM exhibit genotoxic effect. Genotoxicity of (–)-usnic acid enantiomer in concentrations of 0.15 and 0.30 mM was in 2 times higher than hat of the (+) enantiomer. It has been noted that (+) and (–) usnic acid enantiomers induce atypical «comets» (hedgehogs). Wherein, (–)-usnic acid induced to 2.5—3.5 times more atypical «comets» than its (+) enantiomer.

Download full-text PDF

Source

Publication Analysis

Top Keywords

usnic acid
20
acid enantiomers
12
human peripheral
8
peripheral blood
8
blood lymphocytes
8
enantiomers usnic
8
concentrations 004—030
8
–-usnic acid
8
atypical «comets»
8
acid
7

Similar Publications

Allelopathic influence of usnic acid on Physcomitrium patens: A proteomics approach.

Plant Physiol Biochem

December 2024

Department of Plant Biology, Pavol Jozef Šafárik University in Košice, Mánesova 1889/23, 040 01, Košice, Slovakia. Electronic address:

Allelopathy, the chemical interaction of plants by their secondary metabolites with surrounding organisms, profoundly influences their functional features. Lichens, symbiotic associations of fungi and algae and/or cyanobacteria, produce diverse secondary metabolites, among other usnic acid, which express to have potent biological activities. Mosses, i.

View Article and Find Full Text PDF

Bacterial biofilms are highly structured surface associated architecture of micro-colonies, which are strongly bonded with the exopolymeric matrix of their own synthesis. These exopolymeric substances, mainly exopolysaccharides (EPS) initially assist the bacterial adhesion and finally form a bridge over the microcolonies to protect them from environmental assaults and antimicrobial exposure. Bacterial cells in dental biofilm metabolize dietary carbohydrates and produce organic acids.

View Article and Find Full Text PDF

Design, synthesis, structural characterization, cytotoxicity and computational studies of Usnic acid derivative as potential anti-breast cancer agent against MCF7 and T47D cell lines.

Comput Biol Chem

December 2024

Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Persiaran Tun Khalil Yaakob, Gambang, Kuantan, Pahang 26300, Malaysia; Centre for Bio-aromatic Research, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Persiaran Tun Khalil Yaakob, Gambang, Kuantan, Pahang 26300, Malaysia. Electronic address:

Article Synopsis
  • - Novel inhibitors like usnic acid derivative (UA1) are being developed to combat the increasing rates of breast cancer (BC) in women, promising stronger effects compared to existing treatments.
  • - The study utilized advanced techniques like FT-IR, NMR, and various simulations to analyze UA1’s structure and anticancer potential, finding it effective against breast cancer cell lines MCF7 and T47D with IC values indicating strong antitumor activity.
  • - Molecular docking and dynamics simulations showed UA1 binds effectively to the target protein, demonstrating stability and a favorable binding energy, suggesting its potential as a preventive agent against breast cancer.
View Article and Find Full Text PDF

Lichen and Its Microbiome as an Untapped Source of Anti-Biofilm Compounds.

Chem Biodivers

November 2024

Laboratoire des Agroressources, Biomolécules et Chimie pour l'Innovation en Santé (LABCiS), UR 22722, Université de Limoges, Limoges, France.

Lichen substances have been first described in the 1870s, and around 10 000 compounds have been isolated and characterized. Most of them have been evaluated for their activity on planktonic microorganisms (bacteria and fungi). More recently, microorganisms colonizing the lichen thallus have been isolated and identified using DNA sequencing, giving access to a wide diversity of culturable microorganisms.

View Article and Find Full Text PDF
Article Synopsis
  • - Cationic antimicrobial peptides (AMPs) show potential as both antimicrobial and anticancer agents, and linking them to bioactive molecules may enhance their effectiveness in treating cancer.
  • - In this study, two derivatives of usnic acid were combined with the AMP L-K6 using a new bonding method while both components demonstrated selective activity against cancer cells, specifically targeting the DNA repair enzyme TDP1.
  • - The resulting conjugates showed a range of effects, from decreased activity of the original drugs to increased cytotoxicity against glioblastoma cells, suggesting enhanced therapeutic potential compared to the individual components.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!