The use of histone deacetylase inhibitors and inhibitors of MEK/ERK-pathway is proposed as a novel potential approach in cancer treatment. Here we studied the effects of histone deacetylase inhibitor, sodium butyrate, and MEK/ERK-pathway inhibitor, PD0325901, on cells with modifications in genes involved in anti-cancer therapy response, Wip1 phosphatase and p53. We have investigated the effect of these agents on cell cycle of wild-type cells, Wip1 knockout cells and cells with double deletion of Wip1 and p53. Our results showed that more severe changes in S and G2/M phases were observed in response to sodium butyrate in Wip1-defecient cells than in wild-type cells. Meanwhile, PD0325901 treatment led to G1 arrest. At the same time, a «sodium butyrate type» response dominated the response to combined treatment with both drugs in Wip1-deficient cells, while the response of Wip1–/–/p53–/– cells to combined treatment was similar to the single use of PD0325901. Wip1–/– and Wip1–/–/p53–/– cells were more sensitive to the use of PD0325901 than wild-type cells. Obtained results suggest that Wip1 deficiency sensitizes cells to sodium butyrate and to MEK/ERK inhibitors independently from Wip1 main target protein — p53. Data acquired give insights into role of Wip1 in cellular responses to treatment with HDAC and MEK/ERK inhibitors.

Download full-text PDF

Source

Publication Analysis

Top Keywords

sodium butyrate
16
cells
12
wild-type cells
12
butyrate mek/erk
8
histone deacetylase
8
cells wip1
8
combined treatment
8
wip1–/–/p53–/– cells
8
mek/erk inhibitors
8
response
6

Similar Publications

Biotics are increasingly being used in the treatment of irritable bowel syndrome (IBS). This study aimed to assess the efficacy and safety of a mixture of microencapsulated sodium butyrate, probiotics ( DSM 26357, DSM 32418, DSM 32946, DSM 32403, and DSM 32269), and short-chain fructooligosaccharides (scFOSs) in IBS patients. This was a randomized, double-blind, placebo-controlled trial involving 120 adult participants with IBS.

View Article and Find Full Text PDF

Background/objectives: Ergothioneine (EGT) is an effective antioxidant that animals cannot produce and has an important anti-inflammatory role in cell protection, which can help lower the risk of various diseases. In this study, we investigated the potential role of gut microbiota in the production of EGT, which was found to increase in the mouse liver after dietary supplementation with betaine (BET) or polydextrose (PDX).

Methods: The effects of BET and PDX on the gut microbiota and tissue EGT content were investigated using a diet-induced obese mouse model and simulated fermentation in the human colon.

View Article and Find Full Text PDF

The connection between gut microbiota and factors like diet is crucial for maintaining intestinal balance, which in turn impacts the host's overall health. microalgae is a sustainable source of bioactive compounds, mainly known for its used in aquaculture and extraction of bioactive lipids, with potential health benefits whose effects on human gut microbiota are still unknown. Therefore, the goal of this work was to assess the impact of on human gut microbiota composition and derived metabolites by combining the INFOGEST protocol and in vitro colonic fermentation process to evaluate potential effects on human gut microbiota conformation through 16S rRNA gene sequencing and its metabolic functionality.

View Article and Find Full Text PDF

Background/objectives: Crohn's disease is known for being associated with an abnormal composition of the bacterial flora, dysbiosis and intestinal function disorders. Metabolites produced by gut microbiota play a pivotal role in the pathogenesis of CD, and the presence of unspecific extraintestinal manifestations.

Methods: The aim of this study was a determination of the level of bacterial metabolites in blood plasma in patients with Crohn's disease.

View Article and Find Full Text PDF

Food waste condensate (FWC) is a valuable source for recovering short-chain fatty acids (SCFAs) through methods such as supported liquid membrane contactors. Containing organic compounds like acetate, propionate, and butyrate, FWC offers a rich substrate for efficient SCFA extraction. Recovering SCFAs from FWC provides notable environmental advantages, including reducing waste and generating high-value products for industries such as bioenergy and chemical production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!