Effect of toe joint stiffness and toe shape on walking biomechanics.

Bioinspir Biomim

Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, United States of America. Author to whom any correspondence should be addressed.

Published: October 2018

During typical human walking, the metatarsophalangeal joints undergo extension/flexion, which we term toe joint articulation. This toe joint articulation impacts locomotor performance, as evidenced by prior studies on prostheses, footwear, sports and humanoid robots. However, a knowledge gap exists in our understanding of how individual toe properties (e.g. shape, joint stiffness) affect bipedal locomotion. To address this gap, we designed and built a pair of adjustable foot prostheses that enabled us to independently vary different toe properties, across a broad range of physiological and non-physiological values. We then characterized the effects of varying toe joint stiffness across a range of different ankle joint stiffness conditions, and the effects of varying toe shape on walking biomechanics. Ten able-bodied individuals walked on a treadmill with prostheses mounted bilaterally underneath simulator boots (which immobilized their biological ankles). We collected motion capture and ground reaction force data, then computed joint kinematics and kinetics, and center-of-mass (COM) power and work. To our surprise, we found that varying toe joint stiffness affected COM Push-off dynamics during walking as much as, or in some cases even more than, varying ankle joint stiffness. Increasing toe joint stiffness increased COM Push-off work by up to 48% (6 J), and prosthetic anklefoot Push-off work by up to 181% (12 J). In contrast, large changes in toe shape had little effect on gait. This study brings attention to the toes, an aspect of prosthetic and robotic foot design that is often overlooked or overshadowed by design of the ankle. Optimizing toe joint stiffness in assistive and robotic devices (e.g. prostheses, exoskeletons, robot feet) may provide a complementary means of enhancing Push-off or other aspects of locomotor performance, in conjunction with the more conventional approach of augmenting ankle dynamics. Future studies are needed to isolate the effects of additional toe properties (e.g. toe length).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8777388PMC
http://dx.doi.org/10.1088/1748-3190/aadf46DOI Listing

Publication Analysis

Top Keywords

joint stiffness
32
toe joint
28
toe
14
toe shape
12
toe properties
12
varying toe
12
joint
10
stiffness
8
shape walking
8
walking biomechanics
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!