Regulation of flowering by green light depends on its photon flux density and involves cryptochromes.

Physiol Plant

Department of Horticulture, Michigan State University, East Lansing, MI 48824-1325, USA.

Published: July 2019

Photoperiodic lighting can promote flowering of long-day plants (LDPs) and inhibit flowering of short-day plants (SDPs). Red (R) and far-red (FR) light regulate flowering through phytochromes, whereas blue light does so primarily through cryptochromes. In contrast, the role of green light in photoperiodic regulation of flowering has been inconsistent in previous studies. We grew four LDP species (two petunia cultivars, ageratum, snapdragon and Arabidopsis) and two SDP species (three chrysanthemum cultivars and marigold) in a greenhouse under truncated 9-h short days with or without 7-h day-extension lighting from green light (peak = 521 nm) at 0, 2, 13 or 25 μmol m  s or R + white (W) + FR light at 2 μmol m  s . Increasing the green photon flux density from 0 to 25 μmol m  s accelerated flowering of all LDPs and delayed flowering of all SDPs. Petunia flowered similarly fast under R + W + FR light and moderate green light but was shorter and developed more branches under green light. To be as effective as R + W + FR light, saturation green photon flux densities were 2 μmol m  s for LDP ageratum and SDP marigold and 13 μmol m  s for LDP petunia. Snapdragon was the least sensitive to green light. In Arabidopsis, cryptochrome 2 mediated promotion of flowering under moderate green light, whereas both phytochrome B and cryptochrome 2 mediated that under R + W + FR light. We conclude that 7-h day-extension lighting from green light-emitting diodes can control flowering of photoperiodic ornamentals and that in Arabidopsis, cryptochrome 2 mediates promotion of flowering under green light.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ppl.12832DOI Listing

Publication Analysis

Top Keywords

green light
32
light
14
photon flux
12
r + w + fr light
12
green
11
flowering
9
regulation flowering
8
flowering green
8
flux density
8
7-h day-extension lighting
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!