The genus Phoma contains several species ubiquitously present in soil, water, and environment. There are two major groups of Phoma, viz., terrestrial and marine. After 1981 researchers all over the world have focused on marine-derived Phoma for their bioactive compounds. The marine Phoma are very rich sources for novel bioactive secondary metabolites, which could potentially be used as drugs. Recently, a large number of structurally unique metabolites with potential biological and pharmacological activities have been isolated from the marine Phoma species particularly Phoma herbarum, P. sorghina, and P. tropica. These metabolites mainly include diterpenes, enolides, lactones, quinine, phthalate, and anthraquinone. Most of these compounds possess antimicrobial, anticancer, radical scavenging, and cytotoxic properties. The present review has been focused on the general background of Phoma, current approaches used for its identification and their limitations, difference between terrestrial and marine Phoma species. In addition, this review summarizes the novel bioactive compounds derived from marine Phoma and their biological activities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00253-018-9329-2 | DOI Listing |
Fungal Biol
November 2024
School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand; Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand; Kyung Hee University, Seoul, 02447, Republic of Korea. Electronic address:
Angew Chem Int Ed Engl
November 2023
State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Nanjing Drum Tower Hospital, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China.
Phomactin diterpenoids possess a unique bicyclo[9.3.1]pentadecane skeleton with multiple oxidative modifications, and are good platelet-activating factor (PAF) antagonists that can inhibit PAF-induced platelet aggregation.
View Article and Find Full Text PDFBraz J Microbiol
September 2023
LR- Microbial Ecology and Technology, INSAT, University of Carthage, Tunis, Tunisia.
Marine-derived fungi have attracted much attention due to their ability to present a new biosynthetic diversity. About 50 fungal isolates were obtained from Tunisian Mediterranean seawater and then screened for the presence of lignin-peroxidase (LiP), manganese-dependent peroxidase (MnP), and laccase (Lac) activities. The results obtained from both qualitative and quantitative assays showed that four of marine fungi isolates had a high potential to produce lignin-degrading enzymes.
View Article and Find Full Text PDFFitoterapia
July 2023
School of Advanced Manufacturing, Fuzhou University, Jinjiang 362251, China; Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China. Electronic address:
Phoma fungi are known to produce a diverse range of natural products which possess various biological activities such as antifungal, antimicrobial, insecticidal, cytotoxic, and immunomodulatory effects. In our present study, we have isolated two novel polyketides (1 and 3), one new sesquiterpenoid (2), and eight known compounds (4-11) from the culture of Phoma sp. 3A00413, a deep-sea sulphide-derived fungus.
View Article and Find Full Text PDFFront Microbiol
September 2021
Hunan Agricultural University, Changsha, China.
In the plant rhizosphere and endosphere, some fungal and bacterial species regularly co-exist, however, our knowledge about their co-existence patterns is quite limited, especially during invasion by bacterial wilt pathogens. In this study, the fungal communities from soil to endophytic compartments were surveyed during an outbreak of tobacco wilt disease caused by . It was found that the stem endophytic fungal community was significantly altered by pathogen invasion in terms of community diversity, structure, and composition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!