Utilization of kidneys from extended criteria donors leads to an increase in average warm ischemia time (WIT), which is associated with larger degrees of ischemia-reperfusion injury (IRI). Kidney resuscitation by extracorporeal perfusion in situ allows up to 60 minutes of asystole after the circulatory death. Molecular studies of kidney grafts from human donors with critically expanded WIT are warranted. Transcriptomes of two human kidneys from two different donors were profiled after 35-45 minutes of WIT and after 120 minutes of normothermic perfusion and compared. Baseline gene expression patterns in ischemic grafts display substantial intrinsic differences. IRI does not lead to substantial change in overall transcription landscape but activates a highly connected protein network with hubs centered on Jun/Fos/ATF transcription factors and HSP1A/HSPA5 heat shock proteins. This response is regulated by positive feedback. IRI networks are enriched in soluble proteins and biofluids assayable substances, thus, indicating feasibility of the longitudinal, minimally invasive assessment . Mapping of IRI related molecules in ischemic and reperfused kidneys provides a rationale for possible organ conditioning during machine assisted ex vivo normothermic perfusion. A study of natural diversity of the transcriptional landscapes in presumably normal, transplantation-suitable human organs is warranted.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6116402PMC
http://dx.doi.org/10.1155/2018/5717913DOI Listing

Publication Analysis

Top Keywords

heat shock
8
warm ischemia
8
normothermic perfusion
8
reperfusion activates
4
activates ap-1
4
ap-1 heat
4
shock response
4
response donor
4
donor kidney
4
kidney parenchyma
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!