The care of individual patients requiring anthracyclines remains challenging as uncertainty persists on predictors of cardiotoxicity. The aim of the present study was to identify potential candidate blood indicators of doxorubicin-induced heart failure. The gene expression profiles of GSE40447 and GSE9128 microarray data were downloaded from the Gene Expression Omnibus database to identify differentially expressed genes (DEGs) using the R/Limma package or GEO2R. Functional and pathway enrichment analysis on DEGs were performed using DAVID database. The cardiovascular disease (CVD)-related DEGs were screen out based on the CardioGenBase database. The protein-protein interaction (PPI) network was constructed with STRING database and visualized by using Cytoscape. Then, the CVD-related DEGs were validated by intersection analysis with DEGs in GSE9128. The overlapping DEGs with a consistent expression pattern in GSE40447 and GSE9128 were identified as candidate indicators for doxorubicin-induced heart failure. A total of 516 DEGs potentially associated with doxorubicin-induced heart failure in GSE40447 were identified, which were mainly enriched in the gene ontology terms related to B cells, leukocytes, lymphocyte activation and B cell receptor signaling pathway. Of the DEGs, 42 were screened out as CVD-related DEGs by using CardioGenBase. Seven genes with high connectivity degree were presented in the PPI network. Finally, 5/6 CVD-related DEGs revealed by the intersection analysis were validated by GSE9128 and highlighted as candidate indicators of doxorubicin-induced heart failure: CD163, CD28, SLC25A20, ANPEP and TLR5. Several genes, including the 5 previously mentioned, were proposed as potential candidate blood indicators for doxorubicin-induced heart failure. Further experimental validations are greatly warranted for future clinical application.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6122467PMC
http://dx.doi.org/10.3892/etm.2018.6482DOI Listing

Publication Analysis

Top Keywords

doxorubicin-induced heart
24
heart failure
24
indicators doxorubicin-induced
20
cvd-related degs
16
potential candidate
12
candidate blood
12
blood indicators
12
degs
10
gene expression
8
gse40447 gse9128
8

Similar Publications

Doxorubicin, a representative drug of the anthracycline class, is widely used in cancer treatment. However, Doxorubicin-induced cardiotoxicity (DIC) presents a significant challenge in its clinical application. Mitochondrial dysfunction plays a central role in DIC, primarily through disrupting mitochondrial dynamics.

View Article and Find Full Text PDF

The transcriptional repressor HEY2 regulates mitochondrial oxidative respiration to maintain cardiac homeostasis.

Nat Commun

January 2025

Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.

Energy deprivation and metabolic rewiring of cardiomyocytes are widely recognized hallmarks of heart failure. Here, we report that HEY2 (a Hairy/Enhancer-of-split-related transcriptional repressor) is upregulated in hearts of patients with dilated cardiomyopathy. Induced Hey2 expression in zebrafish hearts or mammalian cardiomyocytes impairs mitochondrial respiration, accompanied by elevated ROS, resulting in cardiomyocyte apoptosis and heart failure.

View Article and Find Full Text PDF

Dehydroevodiamine Alleviates Doxorubicin-Induced Cardiomyocyte Injury by Regulating Neuregulin-1/ErbB Signaling.

Cardiovasc Ther

January 2025

Department of Cardiothoracic Surgery, Ningbo Medical Center Lihuili Hospital of Ningbo University, No. 57, Xingning Rd, Ningbo City 315041, Zhejiang Province, China.

Doxorubicin (DOX) is a widely used antitumor drug; however, its use is limited by the risk of serious cardiotoxicity. Dehydroevodiamine (DHE) is a quinazoline alkaloid which has antiarrhythmic effects. The aim of this study was to investigate the protective effect of DHE on doxorubicin-induced cardiotoxicity (DIC) and its potential mechanism.

View Article and Find Full Text PDF

Objectives: This study assessed the electrocardiographic pattern and cardiac inflammatory response of doxorubicin-induced myocardial injury in Wistar rats treated with ethanol extract.

Methods: Female Wistar rats (190-200 g) were assigned into five groups of seven rats each. The Group 1 (Control group) was given rat chow and drinking water while the Group 2 (doxorubicin group) received intraperitoneal administration of doxorubicin (2 mg/kg) once weekly for three weeks.

View Article and Find Full Text PDF

Background: Doxorubicin-induced cardiotoxicity is still an important medical problem associated with a high mortality rate in cancer survivors. p53 plays a key role in doxorubicin-induced cardiotoxicity. Diacylglycerol kinase ζ (Dgkζ), a 130-kDa enzyme abundant in cardiomyocytes, regulates the p53 protein expression level in neurons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!