KLDS6.0930 has previously been shown to have probiotic potential. However, being a potential clinical pathogen, it becomes necessary to evaluate its safety status for novel potential probiotic use. The purpose of this study is to systematically evaluate the safety of KLDS6.0930 based on its genomics, phenotypic characteristics and oral toxicity. The complete genome of KLDS6.0930 was sequenced and analyzed for safety-related genes. Antibiotic susceptibility and the production of harmful metabolites were tested. A 28-day repeated oral dose toxicity test was implemented in rats. KLDS6.0930 was resistant to five antibiotics, with intrinsic resistances to four antibiotics and no identified genes for the last. KLDS6.0930 was not hemolytic and virulence factors were non-functional in its genome. KLDS6.0930 produced a small amount of tyramine and phenethylamine; genes encoding tyramine decarboxylase were identified. In addition, genotype and phenotype analyses showed that the strain did not have the ability to generate D-lactic acid, indole, or nitroreductase. KLDS6.0930 did not induce adverse effects on the organs, hematological and serum biochemical parameters, or cecal bacterial populations in the oral toxicity test. These results indicate that KLDS6.0930 can be safely used as a potential probiotic for human consumption and animal feed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6110905 | PMC |
http://dx.doi.org/10.3389/fmicb.2018.01943 | DOI Listing |
J Appl Microbiol
January 2025
College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China.
Aims: Supplementing Lactobacillus alongside antibiotic treatment was a curative strategy to modulate gut microbiota and alleviate antibiotic-associated dysbiosis. But the lactobacilli that are used as probiotics are sensitive or have a low level of resistance to antibiotics, so they usually cannot achieve their beneficial effect, since they are killed by the applied antibiotics. This work aimed to develop the highly resistant Lactiplantibacillus plantarum subsp.
View Article and Find Full Text PDFFish Shellfish Immunol
January 2025
Henan Province Engineering Research Center of Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang 453007, China.
Finding effective alternatives to antibiotics is crucial for sustainable aquaculture. Host-derived probiotics have great potential as a promising alternative to antibiotics for immune regulation and disease control in fish farming. However, limited research exists regarding the application of native probiotics in largemouth bass (Micropterus salmoides).
View Article and Find Full Text PDFProbiotics Antimicrob Proteins
January 2025
College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China.
With the in-depth and comprehensive research on probiotic Bacillus, it has become a hot topic in food science. However, the current status of research using bibliometric analysis to assess the application of probiotic Bacillus in food science has not been comprehensively reviewed. The Web of Science (WOS) database was used in this review's bibliometric analysis to determine the hotspots for research as well as the extent of completed experiments.
View Article and Find Full Text PDFAnn Nutr Metab
January 2025
Department of Paediatrics, Medical University of Warsaw, Warsaw, Poland.
Background: The gut microbiota, or microbiome, is essential for human health. Early-life factors such as delivery mode, diet, and antibiotic use shape its composition, impacting both short- and long-term health outcomes. Dysbiosis, or alterations in the gut microbiota, is linked to conditions such as allergies, asthma, obesity, diabetes, inflammatory bowel disease, and necrotizing enterocolitis in preterm infants.
View Article and Find Full Text PDFMol Nutr Food Res
January 2025
L'institut Agro, Université Bourgogne Europe, INRAe, UMR PAM, Dijon, F-21000, France.
Bacterial adhesion in the gut is critical to evaluate their effectiveness as probiotics. Understanding the bacterial adhesion within the complex gut environment is challenging. This study explores the adhesion mechanisms and the adhesion potential of five selected bacterial strains (Escherichia coli, Lactiplantibacillus plantarum, Faecalibacterium duncaniae, Bifidobacterium longum, and Bifidobacterium longum subsp.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!