Delivery of genes, including plasmid DNAs, short interfering RNAs (siRNAs), and messenger RNAs (mRNAs), using artificial non-viral nanotherapeutics is a promising approach in cancer gene therapy. However, multiple physiological barriers upon systemic administration remain a key challenge in clinical translation of anti-cancer gene therapeutics. Besides extracellular barriers including sequestration of gene delivery nanoparticles from the bloodstream by resident organ-specific macrophages, and their poor extravasation and tissue penetration in tumors, overcoming intracellular barriers is also necessary for successful delivery of nucleic acids. Whereas for RNA delivery the endosomal barrier holds a key importance, transfer of DNA cargo additionally requires translocation into the nucleus. Better understanding of crossing membrane barriers by nucleic acid nanoformulations is essential to the improvement of current non-viral carriers. This review aims to summarize relevant literature on intracellular trafficking of non-viral nanoparticles and determine key factors toward surmounting intracellular barriers. Moreover, recent data allowed us to propose new interpretations of current hypotheses of endosomal escape mechanisms of nucleic acid nanoformulations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6111240 | PMC |
http://dx.doi.org/10.3389/fphar.2018.00971 | DOI Listing |
Nat Commun
January 2025
College of Chemistry, Nankai University, Tianjin, China.
Pathogenic intracellular bacteria pose a significant threat to global public health due to the barriers presented by host cells hindering the timely detection of hidden bacteria and the effective delivery of therapeutic agents. To address these challenges, we propose a tandem diagnosis-guided treatment paradigm. A supramolecular sensor array is developed for simple, rapid, accurate, and high-throughput identification of intracellular bacteria.
View Article and Find Full Text PDFJ Drug Target
January 2025
Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
The cytosolic delivery of therapeutic proteins represents a promising strategy for addressing diseases caused by protein dysfunction. Despite significant advances, efficient delivery remains challenging due to barriers such as cell membrane impermeability, endosomal sequestration, and protein instability. This review summarizes recent progress in protein delivery systems, including physical, chemical, and biological approaches, with a particular focus on strategies that enhance endosomal escape and targeting specificity.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Medical Research, MacKay Memorial Hospital, Taipei 10449, Taiwan.
Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have emerged as a promising therapeutic strategy for spinal cord injury (SCI). These nanosized vesicles possess unique properties such as low immunogenicity and the ability to cross biological barriers, making them ideal carriers for delivering bioactive molecules to injured tissues. MSC-EVs have been demonstrated to exert multiple beneficial effects in SCI, including reducing inflammation, promoting neuroprotection, and enhancing axonal regeneration.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
College of Veterinary Medicine, Northeast Agricultural University, Harbin 150300, China.
The skin functions as the body's primary defense barrier; when compromised, it can lead to dehydration, infection, shock, or potentially life-threatening conditions. Miniature pigs exhibit skin characteristics and healing processes highly analogous to humans. Mesenchymal stem cells contribute to skin injury repair through a paracrine mechanism involving exosomes.
View Article and Find Full Text PDFAntioxidants (Basel)
December 2024
Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei District, Chongqing 400715, China.
Citrus peel essential oils (CPEOs) have demonstrated substantial medicinal potential for glioblastoma treatment because of their extensive antitumor effects, low potential for drug resistance, and ability to cross the human blood-brain barrier. In this study, the chemical compositions of five CPEOs were analyzed via gas chromatography-mass spectrometry (GC-MS). CCK8 assays were used to evaluate the ability of five CPEOs to inhibit U251 human glioblastoma cells, and XLB and RA were selected for further investigation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!