A great challenge in current quantum science and technology research is to realize artificial systems of a large number of individually controlled quantum bits for applications in quantum computing and quantum simulation. Many experimental platforms are being explored, including solid-state systems, such as superconducting circuits or quantum dots, and atomic, molecular and optical systems, such as photons, trapped ions or neutral atoms. The latter offer inherently identical qubits that are well decoupled from the environment and could provide synthetic structures scalable to hundreds of qubits or more. Quantum-gas microscopes allow the realization of two-dimensional regular lattices of hundreds of atoms, and large, fully loaded arrays of about 50 microtraps (or 'optical tweezers') with individual control are already available in one and two dimensions. Ultimately, however, accessing the third dimension while keeping single-atom control will be required, both for scaling to large numbers and for extending the range of models amenable to quantum simulation. Here we report the assembly of defect-free, arbitrarily shaped three-dimensional arrays, containing up to 72 single atoms. We use holographic methods and fast, programmable moving tweezers to arrange-atom by atom and plane by plane-initially disordered arrays into target structures of almost any geometry. These results present the prospect of quantum simulation with tens of qubits arbitrarily arranged in space and show that realizing systems of hundreds of individually controlled qubits is within reach using current technology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41586-018-0450-2 | DOI Listing |
ACS Nano
January 2025
School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China.
Single-crystal Au(111), renowned for its chemically inert surface, long-range "herringbone" reconstruction, and high electrical conductivity, has long served as an exemplary template in diverse fields, , crystal epitaxy, electronics, and electrocatalysis. However, commercial Au(111) products are high-priced and limited to centimeter sizes, largely restricting their broad applications. Herein, a low-cost, high-reproducible method is developed to produce 4 in.
View Article and Find Full Text PDFPLoS One
January 2025
College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, RP China.
This study develops an innovative method for analyzing and clustering tonal trends in Chinese Yue Opera to identify different vocal styles accurately. Linear interpolation is applied to process the time series data of vocal melodies, addressing inconsistent feature dimensions. The second-order difference method extracts tonal trend features.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Physical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India.
Materials exhibiting topological transport properties, such as a large topological Hall resistivity, are crucial for next-generation spintronic devices. Here, we report large topological Hall resistivities in epitaxial supermalloy (NiFeMo) thin films with [100] and [111] orientations grown on single-crystal MgO (100) and AlO (0001) substrates, respectively. While X-ray reciprocal maps confirmed the epitaxial growth of the films, X-ray stress analyses revealed large residual strains in the films, inducing tetragonal distortions of the cubic NiFeMo unit cells.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland.
In situ X-ray reciprocal space mapping was performed during the interval heating and cooling of InGaN/GaN quantum wells (QWs) grown via metal-organic vapor phase epitaxy (MOVPE). Our detailed in situ X-ray analysis enabled us to track changes in the peak intensities and radial and angular broadenings of the reflection. By simulating the radial diffraction profiles recorded during the thermal cycle treatment, we demonstrate the presence of indium concentration distributions (ICDs) in the different QWs of the heterostructure (1.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1X6, Canada.
Monte Carlo (MC) simulations have become important in advancing nanoparticle (NP)-based applications for cancer imaging and therapy. This review explores the critical role of MC simulations in modeling complex biological interactions, optimizing NP designs, and enhancing the precision of therapeutic and diagnostic strategies. Key findings highlight the ability of MC simulations to predict NP bio-distribution, radiation dosimetry, and treatment efficacy, providing a robust framework for addressing the stochastic nature of biological systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!