Isoniazid (INH) and ethambutol (EMB) are two major first-line drugs for managing tuberculosis (TB), caused by the microbe Although co-use of these two drugs is common in clinical practice, the mechanism for the potential synergistic interplay between them remains unclear. Here, we present first evidence that INH and EMB act synergistically through a transcriptional repressor of the gene, the target gene of INH encoding an enoyl-acyl carrier protein reductase of the fatty acid synthase type II system required for bacterial cell wall integrity. We report that EMB binds a hypothetical transcription factor encoded by the gene, designated here as EtbR. Using DNA footprinting, we found that EtbR specifically recognizes a motif sequence in the upstream region of the gene. Using isothermal titration calorimetry and surface plasmon resonance assays, we observed that EMB binds EtbR in a 1:1 ratio and thereby stimulates its DNA-binding activity. When a nonlethal dose of EMB was delivered in combination with INH, EMB increased the INH susceptibility of cultured cells. In summary, EMB induces EtbR-mediated repression of and thereby enhances the mycobactericidal effect of INH. Our findings uncover a molecular mechanism for the synergistic activity of two important anti-TB drugs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6204910 | PMC |
http://dx.doi.org/10.1074/jbc.RA118.002693 | DOI Listing |
This study evaluates the oncolytic potential of the Moscow strain of reovirus against human metastatic melanoma and glioblastoma cells. The Moscow strain effectively infects and replicates within human melanoma cell lines and primary glioblastoma cells, while sparing non-malignant human cells. Infection leads to the selective destruction of neoplastic cells, mediated by functional viral replication.
View Article and Find Full Text PDFViruses
December 2024
Departments of Surgery & Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212, USA.
Pathogenic viruses trigger or disrupt multiple signaling networks to establish an environment optimized for their own replication and productive infection [...
View Article and Find Full Text PDFViruses
December 2024
Department of Global Health and Development, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK.
Vesicular stomatitis virus (VSV) represents a significant advancement in therapeutic medicine, offering unique molecular and cellular characteristics that make it exceptionally suitable for medical applications. The bullet-shaped morphology, RNA genome organization, and cytoplasmic replication strategy provide fundamental advantages for both vaccine development and oncolytic applications. VSV's interaction with host cells through the low-density lipoprotein receptor (LDL-R) and its sophisticated transcriptional regulation mechanisms enables precise control over therapeutic applications.
View Article and Find Full Text PDFViruses
December 2024
Laboratorio de Medicina de Conservación de la Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis, Colonia Casco de Santo Tomas, Ciudad de Mexico 11340, Mexico.
Chikungunya virus (CHIKV) is classified as a pathogen with the potential to cause a pandemic. This situation becomes more alarming since no approved drug exists to combat the virus. The present research aims to demonstrate the anti-CHIKV activity of molecules present in the latex of .
View Article and Find Full Text PDFViruses
December 2024
Division of Virology, ICMR-National Institute of Translational Virology and AIDS Research, Pune 411026, MH, India.
Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV), which are the only members of the gamma(γ) herpesviruses, are oncogenic viruses that significantly contribute to the development of various human cancers, such as Burkitt's lymphoma, nasopharyngeal carcinoma, Hodgkin's lymphoma, Kaposi's sarcoma, and primary effusion lymphoma. Oncogenesis triggered by γ-herpesviruses involves complex interactions between viral genetics, host cellular mechanisms, and immune evasion strategies. At the genetic level, crucial viral oncogenes participate in the disruption of cell signaling, leading to uncontrolled proliferation and inhibition of apoptosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!