Evaluating the Columnar Stability of Acoustic Processing in the Human Auditory Cortex.

J Neurosci

Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota 55455.

Published: September 2018

Using ultra-high field fMRI, we explored the cortical depth-dependent stability of acoustic feature preference in human auditory cortex. We collected responses from human auditory cortex (subjects from either sex) to a large number of natural sounds at submillimeter spatial resolution, and observed that these responses were well explained by a model that assumes neuronal population tuning to frequency-specific spectrotemporal modulations. We observed a relatively stable (columnar) tuning to frequency and temporal modulations. However, spectral modulation tuning was variable throughout the cortical depth. This difference in columnar stability between feature maps could not be explained by a difference in map smoothness, as the preference along the cortical sheet varied in a similar manner for the different feature maps. Furthermore, tuning to all three features was more columnar in primary than nonprimary auditory cortex. The observed overall lack of overlapping columnar regions across acoustic feature maps suggests, especially for primary auditory cortex, a coding strategy in which across cortical depths tuning to some features is kept stable, whereas tuning to other features systematically varies. In the human auditory cortex, sound aspects are processed in large-scale maps. Invasive animal studies show that an additional processing organization may be implemented orthogonal to the cortical sheet (i.e., in the columnar direction), but it is unknown whether observed organizational principles apply to the human auditory cortex. Combining ultra-high field fMRI with natural sounds, we explore the columnar organization of various sound aspects. Our results suggest that the human auditory cortex contains a modular coding strategy, where, for each module, several sound aspects act as an anchor along which computations are performed while the processing of another sound aspect undergoes a transformation. This strategy may serve to optimally represent the content of our complex acoustic natural environment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6125808PMC
http://dx.doi.org/10.1523/JNEUROSCI.3576-17.2018DOI Listing

Publication Analysis

Top Keywords

auditory cortex
32
human auditory
24
feature maps
12
sound aspects
12
columnar stability
8
stability acoustic
8
auditory
8
cortex
8
ultra-high field
8
field fmri
8

Similar Publications

Inter- and intra-hemispheric lateralization alterations in auditory verbal hallucinations of Schizophrenia: insights from resting-state functional connectivity.

Eur Arch Psychiatry Clin Neurosci

January 2025

Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 310016, Hunan, China.

Auditory verbal hallucinations (AVHs) in schizophrenia are hypothesized to involve alterations in hemispheric lateralization, but the specific neural mechanisms remain unclear. This study investigated functional intra- and inter-hemispheric connectivity to identify lateralization patterns unique to AVHs. Resting-state fMRI data were collected from 60 schizophrenia patients with persistent AVHs (p-AVH group), 39 patients without AVHs (n-AVH group), and 59 healthy controls (HC group).

View Article and Find Full Text PDF

Background: Exposures to hazardous noise causes irreversible injury to the structures of the inner ear, leading to changes in hearing and balance function with strong links to age-related cognitive impairment. While the role of noise-induced hearing loss in long-term health consequences, such as progression or development of Alzheimer's Disease (AD) has been suggested, the underlying mechanisms and behavioral and cognitive outcomes or therapeutic solutions to mitigate these changes remain understudied. This study aimed to characterize the association between blast exposure, hearing loss, and the progression of AD pathology, and determine the underlying mechanisms.

View Article and Find Full Text PDF

Background: Alzheimer's disease is a progressive form of dementia where cognitive capacities deteriorate due to neurodegeneration. Interestingly, Alzheimer's patients exhibit cognitive fluctuations during all stages of the disease. Though it is thought that contextual factors are critical for unlocking these hidden memories, understanding the neural basis of cognitive fluctuations has been hampered due to the lack of behavioral approaches to dissociate memories from contextual-performance.

View Article and Find Full Text PDF

Background: Prior longitudinal studies among older adults have documented associations between hearing loss and changes in brain morphology. Whether interventions involving hearing aids can reduce age-related atrophy is unknown. A substudy within the Aging and Cognitive Health Evaluation in Elders (ACHIEVE, Clinicaltrials.

View Article and Find Full Text PDF

Neurons in the central nervous system (CNS) lose regenerative potential with maturity, leading to minimal corticospinal tract (CST) axon regrowth after spinal cord injury (SCI). In young rodents, knockdown of PTEN, which antagonises PI3K signalling by hydrolysing PIP3, promotes axon regeneration following SCI. However, this effect diminishes in adults, potentially due to lower PI3K activation leading to reduced PIP3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!