Metal-induced hypersensitivity is driven by dendritic cells (DCs) that migrate from the site of exposure to the lymph nodes, upregulate costimulatory molecules, and initiate metal-specific CD4 T cell responses. Chronic beryllium disease (CBD), a life-threatening metal-induced hypersensitivity, is driven by beryllium-specific CD4 Th1 cells that expand in the lung-draining lymph nodes (LDLNs) after beryllium exposure (sensitization phase) and are recruited back to the lung, where they orchestrate granulomatous lung disease (elicitation phase). To understand more about how beryllium exposures impact DC function during sensitization, we examined the early events in the lung and LDLNs after pulmonary exposure to different physiochemical forms of beryllium. Exposure to soluble or crystalline forms of beryllium induced alveolar macrophage death/release of IL-1α and DNA, enhanced migration of CD80 DCs to the LDLNs, and sensitized HLA-DP2 transgenic mice after single low-dose exposures, whereas exposures to insoluble particulate forms beryllium did not. IL-1α and DNA released by alveolar macrophages upregulated CD80 on immature BMDC via IL-1R1 and TLR9, respectively. Intrapulmonary exposure of mice to IL-1R and TLR9 agonists without beryllium was sufficient to drive accumulation of CD80 DCs in the LDLNs, whereas blocking both pathways prevented accumulation of CD80 DCs in the LDLNs of beryllium-exposed mice. Thus, in contrast to particulate forms of beryllium, which are poor sensitizers, soluble or crystalline forms of beryllium promote death of alveolar macrophages and their release of IL-1α and DNA, which act as damage-associated molecular pattern molecules to enhance DC function during beryllium sensitization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6191034 | PMC |
http://dx.doi.org/10.4049/jimmunol.1800303 | DOI Listing |
J Phys Chem A
January 2025
Novosibirsk State University, Pirogov str. 1, Novosibirsk 630090, Russian Federation.
Nine metal complexes formed by three symmetric β-diketonates (, acetylacetonate (), 1,1,1,3,3,3-hexafluoro-acetylacetonate (), and 2,2,6,6-tetramethylheptane-3,5-dionate ()) and three metal ions (with three different coordination geometries, , Be - tetrahedral, Cu - square planar, and Pb - "swing" square pyramidal) were investigated. The study combines structural analyses, vibrational spectroscopic techniques, and quantum chemical calculations with the aim of bridging crystal structure, electronic structure, molecular topology, and far-infrared (FIR) spectroscopic characteristics. The effect of intramolecular interactions on the structural, electronic, and spectroscopic features is the center of this study.
View Article and Find Full Text PDFJ Chem Phys
December 2024
Institute of Atomic and Molecular Physics, Jilin University, Changchun 130023, China.
While planar tetracoordinate (pt) centers have been extensively explored from carbon to other octal-row elements or their heavier analogs, their counterparts involving alkali (A) and alkaline-earth metals (Ae) remain elusive due to the large atomic radius and absence of p orbitals. In this work, we found six hitherto unknown anionic ptA (A4A-) and neutral ptAe (A4Ae) centers through an extensive exploration of potential energy surfaces. The D4h-symmetry ptBe structures in Li4Be and Na4Be emerge as the lowest-energy configurations, and all the other ptA/ptAe structures are higher in energy or saddle points.
View Article and Find Full Text PDFEnviron Sci Technol
November 2024
IISD Experimental Lakes Area, Winnipeg, Manitoba R3B 0T4, Canada.
Soils accumulate anthropogenic mercury (Hg) from atmospheric deposition to terrestrial ecosystems. However, possible reemission of gaseous elemental mercury (GEM) back to the atmosphere as well as downward migration of Hg with soil leachate influence soil sequestration of Hg in ways not sufficiently understood in global biogeochemical models. Here, we apply fallout radionuclide (FRN) chronometry to understand soil Hg dynamics by revisiting the METAALICUS experiments 20 years after enriched isotope tracers (Hg, Hg, Hg, and Hg) were applied to two boreal watersheds in northwestern Ontario, Canada.
View Article and Find Full Text PDFInorg Chem
October 2024
Institute of Geosciences, Goethe University Frankfurt, Altenhöferallee 1, 60438 Frankfurt, Germany.
The anhydrous beryllium carbonate Be[CO] with calcite-type crystal structure was obtained by a reaction of BeO with CO in a laser-heated diamond anvil cell at pressures between 30 GPa and 80 GPa and elevated temperatures. Its calcite-type crystal structure (3̅ with = 6) is characterized by 6-fold-coordinated beryllium atoms forming [BeO] octahedra and by trigonal-planar [CO] groups. The crystal structure was determined by synchrotron-based single-crystal X-ray diffraction and confirmed by density-functional-theory-based calculations in combination with experimental Raman spectroscopy.
View Article and Find Full Text PDFJ Phys Chem A
September 2024
Advanced Computational Chemistry Centre, Cotton University, Guwahati 781001, India.
Chemical bonding has attracted chemists since its inception. Dative bonding between a donor and acceptor moiety is also an important phenomenon, which results in stabilization of many chemical compounds. Herein, we show that an extremely strong dative bond is possible between a fluoride ion and a beryllium center which is a part of a half-sandwich complex, BHBe.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!