Access to safe drinking water and improved hygiene are essential for preventing diarrheal diseases in low- and middle-income countries. Integrating water treatment and hygiene products into antenatal clinic care can motivate water treatment and handwashing among pregnant women. Free water hygiene kits (water storage containers, sodium hypochlorite water treatment solution, and soap) and refills of water treatment solution and soap were integrated into antenatal care and delivery services in Machinga District, Malawi, resulting in improved water treatment and hygiene practices in the home and increased maternal health service use. To determine whether water treatment and hygiene practices diffused from maternal health program participants to friends and relatives households in the same communities, we assessed the practices of 106 nonpregnant friends and relatives of these new mothers at baseline and 1-year follow-up. At follow-up, friends and relatives were more likely than at baseline to have water treatment products observable in the home (33.3% vs. 1.2%, p < 0.00001) and detectable free chlorine residual in their water, confirming water treatment (35.7% vs. 1.4%; p < 0.00001). Qualitative data from in-depth interviews also suggested that program participants helped motivate adoption of water treatment and hygiene behaviors among their friends and relatives.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0272684X18797063DOI Listing

Publication Analysis

Top Keywords

water treatment
32
friends relatives
16
treatment hygiene
12
water
11
treatment
8
nonpregnant friends
8
machinga district
8
district malawi
8
treatment solution
8
solution soap
8

Similar Publications

Enhancing Biodegradation of Insoluble High Molecular Weight Polycyclic Aromatic Hydrocarbons in Macroemulsion (ME) Bioreactors with a Liquid-Liquid Interface.

ACS Appl Mater Interfaces

January 2025

College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, China.

Due to the low bioavailability and insolubility of high molecular weight polycyclic aromatic hydrocarbons (HMW-PAHs) in aqueous solutions, their degradation efficiency is significantly limited in wastewater treatment and environmental remediation. To address this challenge, we designed oil-in-water (O/W) macroemulsion (ME) bioreactors with mixed surfactants (Tween-80 and Triton X-100), -butanol, corn oil, and () to enhance the degradation efficiency of pyrene. Owing to the higher solubility of pyrene in MEs, it could be easily adsorbed onto hydrophobic groups on the cell surface.

View Article and Find Full Text PDF

Evaluation of biobased materials in the development of polymeric membranes for water capture and purification.

Int J Biol Macromol

January 2025

Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain.

The current study addresses the pressing issue of unsustainable water management, particularly in regions experiencing high water stress. It focuses on examining the viability of polymeric membranes composed of biobased materials, mainly chitosan, for various sustainable water management solutions. The membranes evaluated in the study were blends of PVC with either chitosan-silica or charcoal-silica, designed to enhance their functionality and performance.

View Article and Find Full Text PDF

Preparation of dried nanoemulsion formulation by electrospinning.

Eur J Pharm Sci

January 2025

University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia. Electronic address:

Dry eye disease is a multifactorial condition characterized by a loss of homeostasis of the tear film. Among the various treatment approaches, the application of ophthalmic oil-in-water nanoemulsions with incorporated anti-inflammatory drugs represents one of the most advanced approaches. However, the liquid nature of nanoemulsions limits their retention time at the ocular surface.

View Article and Find Full Text PDF

The new EU Urban Wastewater Treatment Directive requires stricter limits introducing quaternary treatments and poses significant challenges to achieving a sustainable environment. Advanced membrane-based treatment processes combined with mathematical models can be a good solution for facing the challenges above. Most existing literature on membrane filtration models primarily focuses on membrane bioreactors, lacking mechanistic models on ultrafiltration (UF) membranes.

View Article and Find Full Text PDF

The effect of co-precipitation and high-pressure treatment on functional and structural properties of millet and moringa protein.

Food Chem

January 2025

Department of Food Plant Operations, Incubation, and Entrepreneurship, National Institute of Food Technology, Entrepreneurship and Management, Thanjavur (NIFTEM-T), Thanjavur 613005, Tamil Nadu, India. Electronic address:

Protein co-precipitation overcomes the limitations of individual proteins and improves their nutritional profile and functional properties. This study examined the impact of co-precipitation and high-pressure (HP) treatment on millet-moringa protein co-precipitate structure and functional properties. The co-precipitation has significantly (p < 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!